Experimental endometriosis reduction in rats treated with pioglitazone

HongYan Liu¹, ShiXiu Liao¹*, ShengLi Zhou², DongYu Zhang², HuiNa Liu³, XiaoLi Zhao⁴, Li Dong⁵, Dong Wu¹, Tao Wang¹, Yan Chu¹, QiaoFang Hou¹, QianNan Guo, Tao Li¹, Li Wang¹, Miao He¹, HuiRu Zhao¹, Ke Yang¹, Chaoyang Zhang¹, Feifei Huang¹ and Yanli Yang¹

¹Medical Genetics Institute of Henan Province People’s Hospital, Zhengzhou, Henan 450003, China.
²Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, China.
³Obstetrics and Gynecology of Zhengzhou Central Hospital, Zhengzhou, Henan 450007, China.
⁴Obstetrics and Gynecology of Zhengzhou People’s Hospital, Zhengzhou, Henan 450052, China.
⁵Obstetrics and Gynecology of Henan Province People’s Hospital, Zhengzhou, Henan 450003, China.

Accepted 27 February, 2012

The objective of this paper was to assess the effectiveness of the pioglitazone on endometriosis in rats. The study was performed on 24 Wistar rats. Endometriosis induction was performed in 24 rats, which were divided into three groups: group I (model group); and group II, the treatment group, comprising the other 12 rats. After 3 months, pioglitazone was performed in all animals. Pioglitazone treatment seems to be effective in treatment of endometriosis.

Key words: Pioglitazone, endometriosis, uterine implant, NF-κB p65, IRβα.

INTRODUCTION

Endometriosis is a chronic disorder defined by the presence of endometrial tissue outside the uterine cavity. It is predominantly found in women of reproductive age and is an established cause of infertility and chronic pelvic pain (Berkley et al., 2005; Olive and Schwartz, 1993). Endometriosis is considered a benign disorder, but it shares some of the characteristics of malignancy, such as abnormal morphology, deregulated cell growth, cellular invasion, and neoangiogenesis. Additionally, endometriosis is closely linked to severely impaired fertility, as it can be diagnosed in 68% of patients suffering from infertility (Koninckx et al., 1991). To date, insights into the pathophysiology of endometriosis, and thus the development of effective treatment strategies, are surprisingly meager, which is attributed in part to the difficulties in studying the disease in humans. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily that affect gene expression upon ligand binding (Agic et al., 2006). Such ligands encompass endogenous fatty acids and eicosanoids in addition to synthetic ligands, including nonsteroidal antiinflammatory drugs (Lebovic et al., 2001; Fallah et al., 2011; Zainuddin et al., 2011) and thiazolidinediones (TZDs) such as pioglitazone used in this study.

An ideal treatment would eliminate endometriotic lesions, prevent recurrence, be affordable with few if any side effect, and not impede ovulation. Immune modulating drugs have been studied as candidate treatment options given the implicit role of an abnormal immune response seen with this disease (Barrier et al., 2004; D’Hooghe et al., 2006; Falconer et al., 2006; Brown and Plutzky, 2007; Willson et al., 2000; Sher and Alyemeni, 2011; Biswas et al., 2011).

Therefore, the objective of this study, using a rat model...
Liu et al. 027

1.2
1
0.8
0.6
*
**
0.4
**
0.2
0
1
2
3
IL-8
NF-κB p65
IκBα

Figure 1. Effect of the pioglitazone on the levels of IL-8, NF-κB p65 and IκBα protein expression in uterine implant. 1. Model control; 2. Pioglitazone I; 3. Pioglitazone II; * \(p < 0.05 \), ** \(p < 0.01 \), compared with model control.

of endometriosis, was to assess the ability of pioglitazone to impede the development of endometriosis.

MATERIALS AND METHODS

Animal treatment

Methodology was proposed by Nogueira et al. (2007). Shortly after the midway incision, the uterine horns were identified; fragments of the medium third were resected, immersed in saline solution and cut into 4 × 4 mm fragments. The fragments were sutured to the mesentery adjacent to the artery that irrigates the cecum, with the serosal surface turned to the peritoneum and the endometrial layer turned to the cavity. After the first surgery, the animals were kept in the laboratory for a period of 21 days. After this period, the rats underwent an additional operation; an inventory of the peritoneal cavity was taken using a digital pachymeter to identify the success of the autotransplantation, followed by a volume calculation using this formula: \[\frac{4p \times \text{length}/2 \times \text{width}/2 \times \text{height}/2}{3} \] (Kudon et al., 1997). Classification of the experimental endometriosis implant growth was performed according to Quereda et al. (1996), and only those animals that progressed to a growth score III remained in the study (Figure 1).

After the surgical approach, the rats were identified and randomly divided into (pioglitazone-treated Group) and model control groups (MC group). Gavage of pioglitazone at 0, 25 and 0.50 mg/kg d for 15 days was carried out for the pioglitazone groups (n=8 in each group). The MC group received 1 ml daily gavage of 0.9% saline solution for 14 days. After the end of the medical treatments, the rats underwent a third laparotomy, an inventory of the peritoneal cavity and measurements of autotransplant volumes were performed; the transplant and the middle third of the remaining uterine horn were then removed. The salvaged tissue was rinsed with 0.9% saline solution and stored in 10% formaldehyde buffer for later histopathological analysis. Paraffin tissues were sectioned in 5-mm widths and placed in a warm bath; the slides were incubated with Meyer albumin and dried afterwards. Tissue sections were stained with hematoxylin–eosin (HE), and histological analysis was performed by one pathologist. The estrous cycles were analyzed in the middle third of the uterine horn remaining and drug efficacy was evaluated.

Serum tumor necrosis factor-alpha (TNF-α) level

Serum TNF-α level was measured using ELISA kits.

Immunohistochemistry

The specimens (endometriosis tissue) were cleared with xylene, and treated with 0.3% H₂O₂ in methanol. After washing with PBS, the Interleukin-8 (IL-8) was measured according to S-P immunohistochemistry kits.

Western blot analysis

Protein concentration of the samples (endometriosis tissue) was measured using bovine serum albumin (BSA) as the standard. Proteins (20 or 40 μl) were separated using SDS-PAGE in 10% polyacrylamide gels and electrophoretically transferred to polyvinylidene difluoride (PVDF) membrane (Bio-Rad, Richmond, CA), and the plate was blocked with 8% skim milk/TBS for 1 h at room temperature. The membrane was then incubated with the abovementioned anti-rat NF-κB p65, IκBα and β-actin antibodies diluted in 8% skim milk/TBS (1:200) overnight at 4°C followed by another 1 h incubation with horseradish peroxidase-conjugated secondary antibodies (donkey anti-rabbit IgG; Amersham Pharmacia Biotech Ltd., Arlington Heights, IL) and rabbit anti-goat IgG (Cappel, Aurora, OH). The protein bands were visualized by ECL plus Western blotting detection system (Amerham Pharmacia Biotech Ltd., Arlington Heights, IL) followed by a brief exposure to Hyperfilm (Amerham Biosciences UK Ltd.). Quantity One v3.0 software (PDI, Inc, NY, USA) was used to quantitate the band intensities.

RESULTS

Table 1 shows the effect of pioglitazone on uterine implant volume in the experimental rats. There was insignificant difference in initial implant volume between groups. The value of uterine implant volume was found to be significantly decreased in the pioglitazone-treated rats.
Table 1. Effect of pioglitazone on uterine implant volume, volume change and inhibition rate in the experimental rats.

<table>
<thead>
<tr>
<th>Group</th>
<th>Implant volume (mm3) before treatment</th>
<th>Implant volume (mm3) after treatment</th>
<th>Volume change (mm3)</th>
<th>Inhibition rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model control</td>
<td>38.57±13.84</td>
<td>40.85±16.84</td>
<td>-2.28±4.29</td>
<td>-</td>
</tr>
<tr>
<td>Pioglitazone I</td>
<td>39.42±15.08</td>
<td>27.91±11.29 **</td>
<td>11.51±10.04 **</td>
<td>29.06</td>
</tr>
<tr>
<td>Pioglitazone II</td>
<td>40.13±22.14</td>
<td>17.04±7.39 **</td>
<td>23.09±12.65 **</td>
<td>57.39</td>
</tr>
</tbody>
</table>

** $p < 0.01$, compared with model control.

Table 2. Effect of the pioglitazone on spleen index, serum and peritoneal fluid TNF-α levels in experimental animals.

<table>
<thead>
<tr>
<th>Group</th>
<th>Spleen index (mg/g)</th>
<th>Serum TNF-α (ng/L)</th>
<th>peritoneal fluid TNF-α (ng/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model control</td>
<td>1.83±0.121</td>
<td>35.04±6.93</td>
<td>99.48±4.29</td>
</tr>
<tr>
<td>Pioglitazone I</td>
<td>2.10±0.159</td>
<td>21.21±6.91 **</td>
<td>73.82±2.85 **</td>
</tr>
<tr>
<td>Pioglitazone II</td>
<td>2.47±0.362 **</td>
<td>14.83±5.02 **</td>
<td>50.14±3.01 **</td>
</tr>
</tbody>
</table>

* $p < 0.05$, ** $p < 0.01$, compared with model control.

Figure 2. Effect of the pioglitazone on peripheral blood VEGF and MMP-9 levels. 1. Model control; 2. Pioglitazone I; 3. Pioglitazone II, * $p<0.05$, compared with model control

when compared to model control rats. There was significant difference in volume change between model control group and pioglitazone-treated groups. Inhibition rate increased with the increasing medicine concentration.

The spleen index in the pioglitazone-treated animals was significantly higher than that of the corresponding model controls. However, there was a significant decrease in serum and peritoneal fluid TNF-α levels of the animals treated with pioglitazone compared to the corresponding model control animals ($p < 0.01$) (Table 2).

The levels of IL-8, and NF-κB p65 in uterine implant of pioglitazone-treated animals were significantly lower than that of the corresponding model control (Figure 1). However, IκBα in uterine implant of pioglitazone-treated animals were significantly higher than that of the corresponding model control.

Figure 2 shows that the peripheral blood vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) levels were significantly lower in the pioglitazone-treated groups than in the model control group ($p < 0.05$, $p < 0.01$). The effect was dose-dependent.

Figure 3 shows that the monocyte chemotactic protein-1 (MCP-1) and intercellular adhesion molecule 1 (ICAM-1) expression levels were significantly lower in the pioglitazone-treated groups than in the model control group ($p < 0.05$, $p < 0.01$). The effect was dose-dependent.
DISCUSSION

Endometriosis is one of the most common benign gynaecological conditions. These studies have indicated consistently that nulliparous women and women reporting short and heavy menstrual cycles are at an increased risk (Missmer and Cramer, 2003); other factors have been studied but the data are less consistent. These epidemiological findings support the retrograde reflux hypothesis—just one of several theories (others include the induction theory, the celomic metaplasia theory, and the embryonic rests theory (Oral and Arici, 1997; Witz, 1999) that have been put forward to explain the pathogenesis of endometriosis. Although not all of these alternative theories have been abandoned, at present, retrograde menstruation is considered the primum movens responsible for the development of the disease, at least in its form of peritoneal implants (Matarese et al., 2003).

In our study, we found that pioglitazone treatment inhibited uterine implant volume. To clarify the mechanisms involved in this inhibition, we assessed spleen index, serum and peritoneal fluid TNF-α levels, IL-8, NF-κB p65 and IκBα in uterine implant, and peripheral blood VEGF and MMP-9 expression levels after administration of pioglitazone. Spleen index was increased compared with model control rats. In addition, serum and peritoneal fluid TNF-α levels were decreased in the pioglitazone treatment rats.

Increased concentrations of neutrophils in the peritoneal fluid of patients with endometriosis are possibly related to increased local production of neutrophilspecific chemotactic factors. Indeed, endometriosis has been reported to be associated with elevated concentrations of peritoneal IL-8 (Arici et al., 1998). In our study, we also found that pioglitazone treatment inhibited levels of IL-8, NF-κB p65 in uterine implant. IκBα level in uterine implant was increased with increasing pioglitazone concentration. Therefore, it is plausible that accumulation of neutrophils in the pelvic cavity of patients with endometriosis is at least partially due to IL-8, possibly derived from ectopic endometrioid tissue (Bersinger et al., 2008). Increased numbers of neutrophils in the peritoneal cavity of patients with endometriosis may also be related to their increased survival rate owing to antiapoptotic activity of the peritoneal fluid (Kwak et al., 2002).

The proliferation and resistance of EcC to apoptosis contribute to endometriosis development (Garcia-Velasco and Arici, 2003; Beliard et al., 2004; Harada et al., 2004). The role of NF-κB as a proliferative and antiapoptotic factor has been proven in many studies (Yamamoto and Gaynor, 2001; Beg et al., 1995; Grumont et al., 1998; Slee et al., 1999; Karin and Lin, 2002; Doosti et al., 2011; Zhao et al., 2011). However, NF-κB may have different effects on apoptosis in different cell types (Kasibhatla et al., 1999; O’Connor et al., 2000). A recent study showed the predictive value of NF-κB/p65 activation and PR-B immunoreactivity for ovarian endometrioma recurrence, implicating these biomarkers in endometriosis recurrence and identifying these proteins as therapeutic targets to prevent recurrence (Shen et al., 2008).

Vascular endothelial growth factor (VEGF) facilitates the development of endometriotic lesions (Shifren et al., 1996; Van Langendonckt et al., 2008). In a rat endometriosis model, a significant reduction in
microvessel density was achieved by inhibiting the NF-κB pathway (Celik et al., 2008). Members of the metalloproteinase (MMP) family are structurally related proteins that degrade the extracellular matrix and components of the basement membrane (Hulboy et al., 1994; Behrendtsen et al., 1992) and to the progression of human neoplasms, as well as endometriosis (Fishman et al., 1997). Matrix metalloproteinase-9 plays an important role in the pathogenesis of endometriosis (Chung et al., 2001). In our present study, pioglitazone treatment significantly decreased the peripheral blood VEGF and MMP-9 expression levels in animals with endometriosis.

The use of pioglitazone led to a significant decrease of the uterine implant in experimentally induced endometriosis in rats. Moreover, the inhibition rate increased with increasing dose of pioglitazone. In addition to changes that were in inflammation, immunology and oxidative stress are somehow involved in the physiopathology of endometriosis, pioglitazone can act upon these diverse processes. Combined with our results, these conclusions suggest that pioglitazone could be a promising alternative for treating endometriosis.

ACKNOWLEDGEMENT

The work is supported by medicine science technology project of Henan province (No. 2011020123).

REFERENCES

Liu et al. 031

