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In this study, an approach for designing a neural network based on genetic algorithm has been used to 
model mass transfer during osmotic dehydration of potato slices. The experimental data were obtained 
through a complete randomized design with different osmotic solutions (5, 10 and 15% w/w) and potato 
to solution ratios (1:6, 1:8 and 1:10) at varying temperatures (30, 40 and 60°C) and the best model 
obtained with optimization of a multi-layer perceptron neural network had a mean absolute error of 
0.260, 0.516 and 0.137 for moisture content, water loss and solid gain of osmotically dehydrated slices 
respectively. 
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INTRODUCTION 

 
Potato (Solanum tuberosum) is an herbaceous annual 
that grows up to 100 cm tall and produces a tuber so rich 
in starch that ranks as the world's fourth most important 
food crop, after maize, wheat and rice (Lisińska et al., 
1989).  

The technique of food dehydration is probably the 
oldest method of food preservation. The main purpose of 
drying is to allow longer periods of storage, minimize 
packaging requirement and reduce shipping weights. It is 
defined as a process of moisture removal due to 
simultaneous heat and mass transfer (Hernandez-Perez 
et al., 2004).  
Osmotic dehydration is a special method of drying which 
is based on the principle that when cellular material are 
immersed in a hypertonic aqueous solution, a driving 
force for water removal sets up because of the higher 
osmotic pressure of the hypertonic solution. There are 
two major counter-current flows during osmotic dehydra-
tion, that is, water flows out of the food into the solution 
and likewise solute is transferred from the solution into 
the food (Azuara et al., 2002; Rastogi et al., 2004).  
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The influences of the main variables in osmotic dehydra-
tion, including concentration, composition of the osmotic 
solution, temperature, immersion time, pre-treatments, 
nature of food and solution to sample ratio on mass 
transfer has been established in many researches (Yao 
et al., 1996).  

Osmotic dehydration can be modeled by mechanistic 
approaches. However soft-computing methods such as 
neuro-genetic modeling may be suitable for description of 
mass transfer in biological materials such as food with ill-
defined characteristics. Artificial neural network (ANN) 
models recently have been used in the bio-processing 
problems including description the air-drying behavior of 
different natural materials such as carrot, ginseng, 
cassava and mango (Baughman et al., 1995; Erenturk et 
al., 2004; Hernandez-Perez et al., 2004; Kerr et al., 2006; 
Martynenko et al., 2006; Erenturk et al., 2007). Neural 
networks generally consist of a number of interconnected 
processing neurons. Determination of a neural network 
structure is a crucial step in neural network modeling. 
Multi-layer perceptron (MLP) is probably the best known 
type of neural network with three layers: an input layer, 
an output layer and hidden layer(s) and information is 
propagated in a forward direction with no loops. Learning 
algorithms for neural networks training can be classified 



 
 
 

 

in two main groups: supervised and unsupervised 
algorithms. Adjustment of the strength or weights of the 
inter-neuron connection according to difference between 
the desired and actual network outputs corresponding to 
a given input is carried out in a supervised learning 
algorithm such as back propagation. Genetic algorithm is 
one of the suitable algorithms for training MLPs (Jang et 
al., 1997; Martinenko, 2006; Desai, 2008).  

Genetic algorithm (GA) is a probabilistic optimization 
algorithm guided by the mechanics of natural evolution 
according to Darwinian theory of evolution. Evolutionary 
algorithms have proven highly effective for achieving 
optimal or near optimal solutions to many complex real-
world optimization problems and several studies have 
discussed the advantages of genetic algorithm derived 
back propagation neural networks (Maniezzq, 1994; Jang 
et al., 1997; Perrot et al., 1998; Jiang et al., 2003; Huang 
et al., 2009; Samanta et al., 2003; Ko et al., 2009).  

In this work, a genetic algorithm optimized neural 
network was used to model moisture content (MC), water 
loss (WL) and solid gain (SG), obtained experimentally 
through osmotic dehydration of potato slices. The 
proposed model can investigate the dependence of mass 
transfer kinetics (WL and SG) as well as moisture content 
of dehydrated potato slices on different osmotic con-
ditions and study the effectiveness of genetic algorithm in 
optimization of neural network structure. 

 

MATERIALS AND METHODS 
 
Materials 
 
Ripe potatoes were purchased from local market. Thoroughly 
washed and peeled potatoes were cut into slices, 6 mm in thick-
ness using a stainless steel knife. An aluminum mould was used to 
prepare rectangular cubes of dimensions 3 cm × 2 cm × 6 mm. The 
average moisture content of potatoes was found to be 87.9 ± 0.8% 
on wet basis (AOAC, 1990). Salt, as the osmotic agent, was 
prepared from food grade samples. 

 

Osmotic dehydration 
 
Osmotic dehydration was carried out by immersion of potato slices 
in osmotic solution of 5, 10 and 15% w/w concentration. Vessels 
containing osmotic solutions were placed in controlled incubator at 
varying temperatures (30, 40 and 60°C) and different potato to 
solution ratios (1:6, 1:8 and 1:10). The incubator was run without 
the samples for about 30 min to set the desired conditions before 
each drying experiment. Dehydration process started when desired 
temperature were achieved. During dehydration period (4 h), 
samples were taken at 1 h intervals. Each experiment consisted of 
3 experimental runs; at each time interval, triplicate samples were 
used. were drained and were wiped dry with absorbent paper. Upon 
removal from the osmotic solution, potato slices  

The average moisture content and dry matter of 3 repli-cates for 
each treatment were determined by drying at 105°C for 24 h in an 
oven. 

 

Calculations 

  
       

 

were determined as follows: 
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Where; Mi = moisture content of fresh sample (g); Mo = moisture 
content of osmotically treated sample (g); Si= solid content of fresh 
sample (g); So= solid content of osmotically treated sample (g); So  
= solid content of fresh sample (g); Wi = total weight of fresh 
sample (g). 

 

Neural networks modeling and genetic algorithm optimization 

 
Two important factors must be considered in order to ensure a 
successful modeling of MLP. First, is the number of hidden layers 
and second is the number of neurons in each hidden layer. Since 
almost all of the problems in neural network modeling could be 
solved with one hidden layer (Erenturk et al., 2007; Movagharnejad 
et al., 2007; Ko et al., 2009), an ANN with three layers was used in 
this research.  

In total, 324 data were collected for the four different osmotic 
times and three osmotic temperatures, concen-trations and ratios. 
First, the data order was randomized and then the data were 
divided into three partitions. The first partition (training data) was 
used to perform the training of the network (40% of data). The 
second one (cross validation data) was used to evaluate the predic-
tion quality of the network during the training (30% of data). For the 
purpose of estimating the performance of the trained network on 
new data, a third partition, which never was seen by the artificial 
neural network during the training and cross-validation process, 
was used (30% of data) for testing.  

The training process was carried on for 1,000 epochs or until the 
cross-validation data’s mean squared error (MSE), calculated by 
Equation 3 and did not improve for 100 epochs to avoid over fitting 
of the network.  
Back propagation algorithm was used to implement supervised 
training of the network. Back propagation is based on searching an 
error surface (error as a function of ANN weights) using gradient 
descent for point(s) with minimum error. Each iteration in back 
propagation constitutes two sweeps: forward activation to produce a 
solution and the backwards propagation of the computed error to 
modify the neurons’ weights (Movagharnejad and Nikzad, 2007).  

Testing was carried out with the best weights stored during the 
training. Evaluation of the performance of the trained network was 
based on the accuracy of the network in the test partition. 
Therefore, MSE, normalized mean-squared error (NMSE), mean 
absolute error (MAE) and correlation coefficient (r) for each output 
were calculated by using Equations 3 - 7 (Mohebbi et al., 2008) 
based on testing data and were used to compare the performance 
of different ANN architectures. In this study, modeling of mass 
transfer during osmotic dehydration was carried out with Neuroso-
lution for Excel software release 5.0, produced by NeuroDimension, 
Inc. The design of applied ANN is given in Figure 1. 
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Figure 1. Fully connected three-layered MLP network with 9 neurons in the .hidden layer. 
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Where; Oi is the desired output for cross validation data i and Ti is 
the network for cross validation data i and N is the number of data, 
σ2 is the variance, and 
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Statistical analysis 

 
Analysis of variance (ANOVA) of data was performed using a 
statistical program called “MSTAT” version C, and determination of 
significant differences of means was carried out by “Duncan” test at 
5% significant level using the above software program. 

 

RESULTS AND DISCUSSION 
 
Effect of osmotic dehydration on mass transfer 
kinetics 
 
Average values of MC, WL and SG after osmotic dehy-
dration of potato slices for the whole treatments are 
presented in Table 1.  

In Table 2, parts of ANOVA tables for MC, WL and SG 
are given. It was found that WL and SG increased and 
MC decreased significantly as temperature, concentra-
tion, potato to solution ratio and osmotic duration 
increased. Therefore, samples immersed in osmotic 
solution of 15% with potato to solution ratio of 1:10 at 
60ºC and for 4 h had the minimum MC (67.6%) and 
greatest WL (45.54%) and SG (8.31%).  

Increasing WL  and  SG  and  also  decreasing  MC  by 
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Figure 2. Experimental vs. predicted values for moisture content of osmotically dehydrated potato by optimum GA-NN configuration 
(R = 0.996). 

 
 

 

increasing temperature could be attributed to the effect of 
temperature on the membrane permeability by making it 
more permeable to water and salt exchanges. On the 
other hand, by increasing salt concentration, the osmotic 
pressure in the potato tissue is increased, which leads to 
increase of WL and SG and therefore decreasing MC. It 
is clear that raising the quantity of osmotic solution to 
potato samples results in enhancement of mass transfer 
and therefore decrease in MC of osmotically dehydrated 
potato slices. 
 

 

Artificial neural network optimization 

 

Optimization of neural network structure is usually carried 
out with trial and error, while in this research, determina-
tion of the number of neurons in the hidden layer(s), the 
momentum and learning rate was accomplished with 
genetic algorithm. Table 3 depicts specification of the 
algorithm applied in this research. It must be emphasized 
that population size and number of generations affect the 
processing time because the fitness value must be 
calculated for every chromosome in each generation. 
Summary of the network architecture in hidden layer(s) 
by genetic algorithm method is given in Table 4.  

Table 5 reports the performance of optimized networks 
in terms of mean square error (MSE), normalized mean 
square error (NMSE), mean absolute error (MAE), mini- 

 
 
 

 

mum absolute error (Min Abs Error), maximum absolute 
error (Max Abs Error) and the linear correlation coefficient  
(r) between experimental data and neural network 
outputs for testing data set.  

In Figures 2 - 4 MC, WL and SG of experimental data 
versus neural network outputs are shown which illustrate 
good agreement. 
 

 

Conclusion 

 

The following conclusions are drawn from the 
investigation on osmotic dehydration of potato slices and 
the possibility of application of artificial neural network 
optimized with genetic algorithm to predict mass transfer 
kinetics of osmotically dehydrated potato slices: 
 

1. Solid gain and water loss increased and also moisture  
content decreased significantly when osmotic 
temperature, concentration, potato to solution ratio and 
immersion time increased. The effect of temperature was 
more than the others.  
2. A multilayer feed forward neural network based on four 
inputs (operation conditions) and 9 neurons in the single 
hidden layer was found to be the best model for 
predicting MC, WL and SG which showed minimum MSE 
(0.109, 0.395 and 0.030, respectively) and high r (0.996,  
0. 990 and 0.997, respectively) values. 



 
 
 

 
Table 1. Means and standard deviations of MC, WL and SG during osmotic dehydration of potato slices at different concentrations (C), temperatures (T), immersion times (h) and potato to solution ratios.  
 

T 
Brix Ratio 

 M (%)    WL (%)   SG (%)  
 

(ºC) 1h 2h 3h 4h 1h 2h 3h 4h 1h 2h 3h 4h 
 

  
 

30 5 1:10 83.32±0.01 83.08±0.11 81.81±0.06 82.06±0.13 26.61±0.26    26.6±0.72 31.54±0.79 30.06±0.24 0.26±0.06 0.48±0.05 0.53±0.23 0.64±0.06 
 

30 10 1:6 82.86±0.42 82.55±0.4 81.05±0.25 81.3±0.35 27.29±0.69   27.53±0.97   32.73±0.52 31.09±0.51 0.53±0.23 0.75±0.15 0.89±0.09 1.06±0.19 
 

30 10 1:8 82.45±0.26 81.84±0.39 80.67±0.39 80.82±0.29 28.15±0.08   28.98±0.38   33.46±0.46 31.66±0.04 0.71±0.21 1.06±0.26 1.04±0.21 1.34±0.24 
 

30 15 1:6 81.03±0.15 80.8±0.33 79.64±0.41 79.76±0.34 31.23±0.48   31.18±0.17   35.08±0.55 33.88±0.55 1.26±0.24 1.48±0.33 1.5±0.2 1.7±0.15 
 

30 15 1:8 80.83±0.1 80.43±0.25 79.27±0.38 79.35±0.06 32.21±0.16   31.81±0.34 35.64±0.41 34.84±0.01 1.2±0.05 1.64±0.14 1.66±0.21 1.8±0.05 
 

30 15 1:10 80.39±0.19 80.31±0.32 79.3±0.49 78.92±0.23 33.5±0.3 32.5±0.5 35.61±0.56 35.71±0.21 1.26±0.09 1.58±0.15 1.64±0.26 1.94±0.14 
 

40 5 1:6 83.33±0.14 82.95±0.18 81.75±0.04 80.2±0.08 25.08±0.07   25.78±0.25 28.45±0 31.2±0.15 0.56±0.11 0.76±0.11 1.26±0.04 1.99±0.04 
 

40 5 1:8 82.8±0.21 82.6±0.23 80.84±0.13 79.6±0.19 26.41±0.36   26.79±0.66 31.54±0.36 33±0.2 0.76±0.11 0.86±0.06 1.35±0.03 2.06±0.11 
 

40 5 1:10 82.48±0.04 82.39±0.21 80.32±0.15 78.94±0.09 27.66±0.11    27.95±0.4 33.14±0.16 34.75±0.2 0.79±0.06 0.8±0.1 1.41±0.09 2.18±0.03 
 

40 10 1:6 82.16±0.08 81.99±0.17 80±0 78.58±0.07 28.64±0.21   28.91±0.36   33.39±0.19 35.01±0.01 0.86±0.11 0.95±0.23 1.63±0.05 2.41±0.06 
 

40 10 1:8 81.26±0.36 80.94±0.12 79.54±0.06 78.24±0.26 30.06±0.51   30.44±0.04   33.85±0.18 35.15±0.5 1.33±0.2 1.53±0.1 1.9±0.1 2.66±0.09 
 

40 15 1:6 79.83±0.14 79.1±0.46 78.35±0.39 76.83±0.11 33.95±0.18    34.6±0.52 35.5±0.48 37.25±0.22 1.63±0.08 2.08±0.25 2.48±0.2 3.28±0.02 
 

40 15 1:8 79.47±0.4 78.78±0.4 77.83±0.22 76.39±0.25 34.26±0.36 34.98±0.25   36.43±0.08 37.98±0.13 1.85±0.25 2.25±0.28 2.66±0.16 3.43±0.18 
 

40 15 1:10 79.34±0.22 78±0.8 77.15±0.63 75.84±0.53 34.55±0.2 35.54±0.46 37.11±0.51 38.45±0.4 1.89±0.14 2.76±0.56 3.04±0.39 3.75±0.33 
 

60 5 1:6 80.6±0.4 78.94±0.3 77.11±0.31 74.29±0.58 27.15±0.35   29.41±0.31 32.35±0.18 35.95±0.57 2.61±0.29 3.6±0.2 4.49±0.24 5.98±0.35 
 

60 5 1:8 80.06±0.16 78.53±0.19 76.42±0.23 73.13±0.29 28.51±0.26 30.1±0.3 33.18±0.43 37.75±0.12 2.79±0.21 3.8±0.1 4.89±0.09 6.43±0.23 
 

60 5 1:10 79.59±0.13 77.85±0.05 75.38±0.44 72.14±0.18 29.83±0.23 31.79±0.24   35.23±0.72 39.45±0.2 2.89±0.06 3.96±0.11 5.2±0.17 6.71±0.09 
 

60 10 1:6 78.8±0.05 77.19±0.33 74.8±0.14 71.72±0.09 31.28±0 32.95±0.48 36.29±0.11 39.88±0 3.23±0.05 4.24±0.16 5.39±0.09 6.94±0.09 
 

60 10 1:8 78.15±0.12 76.46±0.01 74.58±0.38 71.24±0.03 32.63±0.13   34.35±0.22   37.14±0.21 40.35±0 3.45±0.07 4.49±0.06 5.3±0.27 7.2±0.03 
 

60 10 1:10 77.36±0.1 75.66±0.22 73.07±0.37 70.79±0.21 34.19±0.09   35.94±0.04   39.36±0.46 41.05±0.07 3.71±0.11 4.71±0.19 5.89±0.16 7.34±0.16 
 

60 15 1:6 76.29±0.17 74.44±0.1 71.64±0.34 68.67±0.11 36.26±0.16   38.08±0.08   41.59±0.36 44.64±0.06 4.05±0.1 5.11±0.11 6.34±0.16 7.75±0.08 
 

60 15 1:8 75.92±0.34 73.97±0.61 71.05±0.18 67.93±0.15 36.95±0.12   38.78±0.83   42.48±0.05 45.25±0.07 4.16±0.26 5.29±0.26 6.51±0.14 8.15±0.1 
 

60 15 1:10 75.31±0.29 73.45±0.14 70.55±0.27 67.6±0.03 37.49±0.11 39.29±0.14 43.03±0.38 45.54±0.09 4.53±0.23 5.58±0.07 6.74±0.09 8.31±0.01 
 

 
 

 
Table 2.  Successive mean squares from the analysis of variance of the MC, WL and SG  

 
 

Source Degree of freedom 
 Mean square  

 

 

MC WL SG 
 

   
 

 A 2 1327.03** 964.99** 538.44** 
 

 B 2 369.97** 1281.46** 50.79** 
 

 C 2 29.43** 117.80** 3.72** 
 

 D 3 244.43** 578.87** 52.35** 
 

 A×B 4 8.88** 13.62** 0.48** 
 



 
      

Table 2. Contd.      
       

 A×C 4 0.87** 0.42* 0.22**  

 A×D 6 43.75** 35.07** 13.94**  

 B×C 4 0.35** 5.00** 0.11*  

 B×D 6 0.21* 5.52** 0.12**  

 C×D 6 0.04NS 0.47** 0.03NS 

 Error 216 0.09 0.15 0.04  

 Total 323     
       

 
A osmotic temperature, B osmotic concentration, C osmotic ratio, D osmotic time, 
NS not significant 
**p = 0.01; *p = 0.05. 

 
 
 
 

Table 3. Applied genetic algorithm properties.  
 

Number of population 1000 

Population size 100 

Cross over 1 point 

Cross over probability 0.9 

Mutation Uniform 

Mutation probability 0.01 
  

 
 
 
 

Table 4. Structure of optimized neural network.  

 

Number of hidden layer(s) 
Number of neurons in hidden 

Momentum rate Learning rate  

layer  

   
 

     

1 9 0.875 0.721 
 

    
 

 
 

 
Table 5. Performance of GA-NN for modeling of moisture content, water loss 
and solid gain, in osmotically dehydrated potato slices.  

 

 Performance %MC %WL %SG 
     

 MSE 0.109 0.395 0.030 

 NMSE 0.008 0.020 0.007 

 MAE 0.260 0.516 0.137 

 Min Abs Error 0.0016 0.0054 0.0052 

 Max Abs Error 0.76 1.44 0.49 

 r 0.996 0.990 0.997 
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Figure 3. Experimental vs. predicted values for water loss of osmotically dehydrated potato by optimum GA-NN configuration (R = 
0.990). 
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Figure 4. Experimental vs. predicted values for solid gain of osmotically dehydrated potato by optimum GA-NN configuration 
(R = 0.997). 



 
 
 

 

3. It is clear from the results that optimized ANN model 
describes mass transfer during osmotic dehydration well 
and it is found that genetic algorithm is a good alternative 
over trail and error approach for quick and efficient 
determination of optimal ANN structure. This methodo-
logy can be applied to optimize the operating conditions 
regarding different state variables. 
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