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This review will summarise the molecular approaches used to detect and analyse the genomes of Babesia bovis, B. 
bigemina and Anaplasma marginale which cause bovine babesiosis and anaplasmosis. These tick borne diseases 
are widely distributed in Africa, Asia, Australia, and Central and South America and for example, have been estimated 
to have an economic impact of US$15.9, $6.9, $6.2, $2.8, $22 million per annum in Australia, Kenya, Zimbabwe, 
Tanzania, and South Africa, respectively (McLeod and Kristjanson, 1999). The development and uptake of molecular 

tools to study these pathogens are reviewed to highlight potential directions for future research. 
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INTRODUCTION 

 
Babesiosis 

 
The two most economically important species of Babesia 
to the cattle industries of many tropical and sub-tropical 
countries of the world are Babesia bigemina Smith & 
Kilbourne, 1893 and B. bovis Babes, 1888 (Callow, 
1984a; Callow, 1984b; Hove et al., 1998). Disease is  
characterised by fever, weakness, ataxia, 
haemoglobinuria, anaemia and presence of 
intraerythrocytic parasites (Wright et al., 1989). Both 
species belong to the phylum Apicomplexa with B. bovis 
causing more severe disease than B. bigemina (de Vos 
et al., 2000). A major tick vector in Australia and Africa for 
both species is Boophilus microplus, while B. bigemina is 
also transmitted by B. decloratus and Rhipicephalus spp. 
in Africa (Friedhoff, 1988). 
 
Anaplasmosis 

 
Anaplasmosis is an arthropod-borne disease of cattle and 

other ruminants caused by the intraerythrocytic rickettsiae 
of the genus Anaplasma, Family Anaplasma-  
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taceae (Dumler et al., 2001). Based on location within the 
erythrocyte there are 2 species of Anaplasma that infect 
cattle, A. marginale and A. centrale. A. centrale has only 
naturally been isolated in South Africa and, due to it's 
milder pathogenesis has been used as a vaccine to 
protect against clinical anaplasmosis caused by A. 
marginale in Argentina, Australia, Israel, Malawi, South 
Africa, Uruguay and Zimbabwe (reviewed by Bock and 
De Vos, 2001). Clinically, acute anaplasmosis caused by 
A. marginale manifests as a progressive anaemia and 

jaundice associated with the presence of intraerythrocytic 
inclusion bodies. Anaplasmosis is more widespread than 
babesiosis due to a larger number of tick vectors for A. 
marginale in tropical, sub-tropical and temperate regions 
of the world (Potgieter and Stoltsz, 1994). Only one tick 
vector for A. marginale exists in Australia,  
B. microplus (Callow, 1984a). 
 
 
DIAGNOSIS 

 
Antibody/antigen detection 

 
A characteristic feature of babesiosis and anaplasmosis, 

is that animals which recover from a primary acute attack 

become carriers of the respective haemoparasite. Micro- 



 
 
 

 

scopic examination of Giemsa stained blood smears are 
traditionally used to confirm acute disease states and for 
the most part, serological methods have been used to 
detect antibodies in animals which have recovered from 
infections. Advances in serological diagnosis of 
babesiosis and anaplasmosis have been reviewed 
previously (de Vos et al., 2000; McElwain, 2000). 

 

Molecular techniques 
 
Polymerase chain reaction (PCR) has been increasingly 
applied to detect these pathogens in both blood and tick 
vectors instead of microscopy (Table 1). Although a 
number of publications report the use of PCR, most 
publications are based on 6 original methods for all 
pathogens (Suarez et al., 1991; Fahrimal et al., 1992; 
Figueroa et al., 1992a; Figueroa et al., 1993; Azambuja et 
al., 1994; Torioni de Echaide et al., 1998). Many reports 
summarised in Table 1 compare PCR detection with 
serology to demonstrate assay specificity. However, the 
most suitable detection method depends upon whether 
antigen or antibody detection is relevant for the particular 
investigation, detection of parasites, or current infection, 
prevalence studies or evidence of exposure to parasites. 
 

Although PCR is more sensitive than light microscopy 

(Bose et al., 1995), many of the methods described in Table 

1 utilise complicated post-PCR detection methods to further 

enhance the sensitivity and confirm the specificity of the 

PCR technique such as PCR- ELISA and PCR-probe 

hybridisation. A quantifiable PCR technique referred to as 

real time PCR (also known as 5' Taq  
nuclease assays, fluorogenic probe assays, or TaqMan 
assays), are increasingly applied for the detection and 
identification of animal pathogens and do not require post 
PCR electrophoresis or processing steps (Belak and 
Thoren, 2001). Real time assays exploit the 5' nuclease 
activity of Taq DNA polymerase cleaving a dual labelled 
fluorescent probe which has annealed to a specific 
sequence between two primers (Livak et al., 1995). To 
date, the applications of real time PCR for the detection 
of tick borne disease pathogens have been described for 
Theileria sergenti and A. phagocytophilum (Pusterla et 
al., 1999; Belak and Thoren, 2001; Jeong et al., 2003; 
Courtney et al., 2004). Real time PCR has engendered 
wider acceptance of PCR due to its improved rapidity, 
sensitivity, reproducibility and the reduced risk of carry-
over contamination (Mackay, 2004). Currently, real time 
PCR assays for the Anaplasma and Babesia species 
discussed here have only been used for the study of 
gene expression and not for diagnostic applications (Lohr 
et al., 2002; Suarez et al., 2003). It may not be feasible 
for certain laboratories to use PCR-ELISA, PCR-probe 
hybridisation or real time PCR assays as the application 
of each of these methods requires specific and expensive 
reagents and equipment. Microscopy remains the most 
economic and sustainable method of parasite detection 
for all laboratories. 

  
  

 
 

 

Other molecular approaches such as DNA probes 
(based on the MSP1b gene) have been developed for in 
situ hybridization detection of A. marginale in both blood 

smears and ticks (Ge et al., 1995; Ge et al., 1997; Kocan 

et al., 1998). 
 

 

Methods to detect multiple haemoparasite infections 

 

Multiplex PCR was initially developed to detect B. bovis, 
B. bigemina and A. marginale in a single sample 
(Figueroa et al., 1993) . However, the efficiency of 
numerous primer sets in a single PCR reaction limits the 
efficiency and consequent sensitivity of each specific 
assay. The following approaches have been developed to 
rectify this deficiency by targeting conserved sequences 
for PCR, followed by either restriction enzyme digest 
analysis or specific probe hybridisation to identify  
species. A PCR-RFLP method based on the  -tubulin 
gene is able to differentiate 7 Babesia species and 2 
Theileria species of cattle and horses (Caccio et al., 
2000) . Reverse line blot (RLB) hybridisation relies on the 
initial amplification of 18S and/or 16S rDNA conserved 
regions followed by hybridisation of the PCR product to a 
membrane with covalently linked species-specific 
oligonucleotides. Gubbels et al. (1999) demonstrated that 
the RLB hybridisation method can be utilised in the 
epidemiological monitoring of tick borne disease. 
Subsequent studies demonstrate that RLB is best applied 
for the detection of a broad range of pathogens in a 
sample; for example 6 Theileria spp. and 3 Babesia spp. 
(Sparagano et al., 2000); 5 Anaplasma spp. and 3 
Ehrlichia spp. (Bekker et al., 2002); 21 species of detect 
Ehrlichia, Anaplasma, Babesia and Theileria (Georges et 
al., 2001) . These approaches have detected these 
pathogens in tick and animal populations such as the 
presence of B. bovis in Mediterranean countries 
(Sparagano et al., 2000; Almeria et al., 2001b). RLB 
hybridisation appears to exhibit sensitivities equitable to 
that obtained with individual PCRs for some species such 
as Theileria parva (Oura et al., 2004). The potential also 
exists to expand the application of multiplex real time 
assays for the detection of multiple tick-borne disease 
pathogens in one sample (Courtney et al., 2004). 
Additionally, oligonucleotide micro-array technologies 
traditionally used for gene expression studies are now 
also being adapted for diagnostic applications (Lin et al., 
2004) and may be used in the future to study and detect 
tick-borne diseases. 
 

 

Differentiation of strains 
 

It is not possible to identify strains of these species 

through microscopic examination. However, DNA 

restriction digestion, restriction fragment length 

polymorphism (RFLP) and random amplified polymorphic 



 
 
 

 
Table 1. Summary of PCR methods used for the detection of A. marginale, B. bovis and B. bigemina and comparison to traditional methods. 

 

Species Reference Method reference 
1
Comparative sensitivity/comments 

  and/or gene target  

Anaplasma Stich et al., 1993 msp1 gene PCR used to detect A. marginale directly in haemolymph in ticks 
marginale   PCR was not compared to other methods. 

 Figueroa et al., 1993 Aboytes-Torres 1992 Multiplex PCR method detecting 0.0001% A. marginale PPE. 
  (PhD thesis)/unknown  

  gene  

 Gale et al., 1996 PCR – ELISA/ PCR more sensitive than ELISA (Duzgun et al., 1988) detecting 
  immunodominant antigen 0.00015% PPE. 

  (unpublished sequence) Card test is more sensitive than PCR but PCR is more specific. 
 Figueroa et al., 1996 Figueroa et al., PCR detection comparable with light microscopy. 
  1993/unknown gene  

 Cossio-Bayugar et Figueroa et al., PCR demonstrated higher prevalence than CF test. 
 al., 1997 1993/unkonwn gene  

 Ge et al., 1995 DNA probe - msp1 PCR used to prepare probe, probe detects 0.00001% PPE. 
 Ge et al., 1997  DNA probe assay more sensitive than CF test and microscopy, 
 Kocan et al., 1998  probe assay not compared with PCR (used for in situ hybridisation). 
 Torioni de Echaide et Major surface protein PCR-probe hybridisation method more sensitive than previous PCR 
 al., 1998 (MSP)5 – nested PCR assays (Figueroa et al., 1993; Gale et al., 1996). 
  and specific probe PCR-probe less sensitive than recombinant MSP5 cELISA. 

  hybridisation (ELISA recommended for epidemiological studies) 
 Herrero et al., 1998 Aboytes-Torres 1992 PCR less sensitive than rMSP5 cELISA (Torioni de Echaide et al., 
   1998). 
 Hofmann-Lehmann Torioni de Echaide et al., PCR showed good correlation with microscopy. 
 et al., 2004 1998/MSP5 PCR  

Babesia Fahrimal et al., 1992 apocytochrome b gene PCR/probe assay more sensitive than thick smear microscopy. 
bovis  PCR and probe  

 Figueroa et al., 1993 Suarez et al., Multiplex PCR method detecting 0.00001% B. bovis PPE. 
  1991/60kDa merozoite  

  antigen  

 Figueroa et al., 1996 Figueroa et al., 1993 PCR more sensitive than light microscopy. 
 Calder et al., 1996 rRNA gene PCR and PCR more sensitive than CF test. 
  probe hybridisation  

 Salem et al., 1999 Fahrimal et al., 1992 and Apocytochrome b (extrachromosomal DNA) PCR test more 
  rDNA PCR tests sensitive than rDNA PCR and CF tests. 

 Almeria et al., 2000a Fahrimal et al., 1992 Babesia spp. not differentiated using light microscopy. 
   PCR more sensitive than microscopy. 
 Gayo et al., 2003 Azambuja et al., PCR more sensitive than microscopy. 
  1994/60kDa protein gene  

 Smeenk et al., 2000 Fahrimal et al., 1992 PCR not compared with other method. 
   Nested PCR detecting 0.001% PPE. 
 Thammasirirak et al. Modified Fahrimal et al., PCR modified into PCR-ELISA format, 1000x more sensitive than 
 2003 (1992) for PCR ELISA thin smears and more sensitive than PCR gel detection. 
   PCR-ELISA low level cross-reaction with A. marginale. 
   Antibody screening more sensitive than PCR-ELISA. 

Babesia Figueroa et al., PCR and probe PCR with probe hybridisation detected 0.0000001% PPE. 
bigemina 1992b hybridisation assay using Test more sensitive than microscopy or CF test. 

  unknown gene target PCR used in combination with probe detection improves sensitivity 
  (GenBank S45366) of PCR 1000x. 
 Figueroa et al., 1993 Figueroa et al., 1992b Multiplex PCR method detected 0.00001% B. bigemina PPE. 
 Figueroa et al., 1996 Figueroa et al., 1993 Light microscopy more sensitive than multiplex PCR. 
 Salem et al., 1999 apocytochrome b gene apocytochrome b (extrachromosomal DNA) PCR test more 
  and rDNA genes sensitive than rDNA PCR and CF test. 

 Almeria et al., 2001a Figueroa et al., 1992b Babesia spp. not differentiated using light microscopy. 
   PCR more sensitive than microscopy. 
 Gayo et al., 2003 Figueroa et al., 1992b PCR more sensitive than light microscopy. 
 Smeenk et al., 2000 Figueroa et al., 1992b PCR detection not compared with other method 0.000001% PPE. 
 Hove et al., 1998 Figueroa et al., 1992b PCR more sensitive than thin smear microscopy and IFAT.   

1
Legend of terms: PPE= percent parasitised erythrocytes; IFAT=indirect fluorescent antibody test; PCR=polymerase chain reaction; 

ELISA=enzyme linked immunosorbent assay; CF=complement fixation. 



 
 
 

 

DNA (RAPD) analysis have been used to demonstrate 
intra-species variation in B. bovis, B. bigemina or A. 
marginale (Krueger and Buening, 1988; Eriks et al., 1989; 
Dalrymple, 1990; Visser et al., 1991; Dalrymple et al., 
1992; Rivas et al., 1993; Carson et al., 1994; Lew et al., 
1997b; Ngeranwa et al., 1998). Repetitive extragenic 
palindromic (REP) and enterobacterial repetitive 
intergenic consensus (ERIC) analysis have been used to 
demonstrate genetic diversity among A. marginale 
isolates (Ferreira et al., 2001). All of these approaches 
require pure preparations of isolates or strains which is 
not always feasible when working with field isolates of 
these haemoparasites. Dalrymple et al. (1992) suggest 
that an ideal gene to differentiate strains of parasites is 
one which is species-specific, single copy, and one which 
varies in size between strains.  

Strains of A. marginale have been differentiated using 
the MSP1a gene (Palmer et al., 2001; Lew et al., 2002a). 
However, de la Fuente et al. (2003b) have demonstrated 
that this gene is under positive selection pressure and 
may not be useful as a marker to characterize geographic 
isolates. Our studies have indicated that MSP1a is 
conserved among the Australian populations of A. 
marginale which is possibly due to the limited introduction 
of this species into Australia and/or presence of only one 
tick vector (Lew et al., 2002a) . Major surface protein 4 
(msp4) gene sequences have been used to demonstrate 
trends in the geographic distribution of A. marginale 
strains (de la Fuente et al., 2001, 2002, 2004).  

Two PCR assays based on two immuno-dominant 
protein genes Bv80 and BvVA1 were developed to 
differentiate B. bovis isolates and strains (Lew et al., 
1997b). These methods support the Australian B. bovis 
live vaccine program by both identifying heterogeneous 
live vaccine strains, and by differentiating vaccine and 
field strains during babesiosis outbreaks (Lew et al., 
1997a; Jorgensen et al., 1998; Bock et al., 2000) A 
similar approach to differentiate B. bigemina strains has 
been developed (G. Anderson, personal communication). 
 

 

Molecular Phylogeny 

 

Important for the accurate diagnoses of species is the 
improved understanding of species phylogeny. Through 
the advent of PCR and automated sequencing methods, 
the analysis of gene sequences has led to an explosion 
of molecular phylogenetic comparisons of species. This 
has been particularly applicable for studying the 
fastidious bacterial species of the order Ricketsiales, 
including the family Anaplasmataceae, by the analysis of 
16S rDNA, groESL (heat shock protein 60/hsp60 gene) 
and surface protein genes. Results of these molecular 
analyses have led to the reassignment of genera 
Eperythrozoon and Haemobartonella from the 
Anaplasmataceae to the family Mycoplasmataceae 
(Rikihisa et al., 1997). Additionally, a recent comprehen- 

  
  

 
 

 

sive reorganisation of rickettsial species led to the 
expansion of the Anaplasmataceae family to include 
species previously from the genera Wolbachia, Ehrlichia, 
Cowdria and Neorickettsia (Dumler et al., 2001). A. 
marginale remains the type species of the Anaplasma 
genus which now also includes 2 new species, A. 
phagocytophilum and A. bovis. 16S rDNA studies of A. 
marginale, A. centrale (Theiler, 1910) and A. ovis (ovine 
anaplasmosis) suggest they are members of the same 
species (<1% sequence heterogeneity). However greater 
discrimination of Anaplasma and related spp. can be 
demonstrated by analysis of the hsp60 gene (groESL)  
and the RNA polymerase -subunit protein sequences 
(Lew et al., 2003; Taillardat-Bisch et al., 2003). These 
analyses have highlighted that, where possible, 
sequences of type species and strains from different 
continents should be compared to confirm molecular 
phylogenies. For instance, Inokuma et al. (2001a,b) 
published 2 articles demonstrating the phylogenetic 
relatedness of A. centrale to other Ehrlichiae based on 
16S rDNA and citrate synthase gene sequences from an 
A. centrale isolate originating from Japan. Our 
subsequent analyses based on 16S rDNA demonstrated 
that the A. centrale vaccine strain (Theiler, 1910) is more 
closely related to A. marginale than it is to this ‘A. 
centrale’ isolate from Japan (Lew et al., 2003).  

Phylogenetic analysis of the 18S rDNA sequences of B. 
bovis and B. bigemina in relation to other Apicomplexa 
have confirmed monophyly of these 2 related species 
(Ellis et al., 1992; Allsopp et al., 1993). Alternative 
approaches using 2 heat shock protein genes hsp70 and 
hsp90 have demonstrated closer similarity of B. bovis and 
B. microti than has been demonstrated by rDNA  
analyses (Ruef et al., 2000). Most molecular phylogenetic 
studies of piroplasmid species are aiming to define the 
inter-relationships among species of the Babesiidae and 
Theileriidae species (Kjemtrup et al., 2000; Zahler et al., 
2000; Penzhorn et al., 2001; Criado-Fornelio et al., 2004). 
The most recent comprehensive review suggests that 
Babesia isolated from ungulates (B. bigemina, B. bovis, 
B. ovis and B. caballi) form a separate clade called 
'Ungulibabesids' within a total 5 clades suggested for the 
piroplasmids (Criado-Fornelio et al., 2003). 
 
 

 

GENE ANALYSIS 

 

Live vaccines consisting of A. centrale and attenuated 
strains of both Babesia spp. have been used to control 

anaplasmosis and babesiosis, respectively, in both Africa 
and Australia (reviewed by de Vos and Bock, 2000; Bock 
and de Vos, 2001; Kocan et al., 2003). However, 
research towards the development of recombinant 
vaccines have provided the impetus to identify the 
function of specific genes as well as the mechanisms 
whereby certain genes manipulate the host immune 



 
 
 

 

system (Palmer et al., 1999; Norimine et al., 2003; Zhang 
et al., 2003). A summary of genes currently accessible on 
the GenBank database has been compiled in Table 2. 
However, discussion of vaccine candidates is beyond the 
scope of this review.  

Most of the sequences listed in Table 2 for Anaplasma 
have resulted from phylogenetic studies described above. 
The antigenic variation of major surface proteins (MSPs) 
of tick-borne bacterial pathogens is primarily a 
mechanism for evasion of the host immune response 
(Brayton et al., 2001). For this reason, A. marginale gene 
function studies have concentrated on the analysis of the 
six MSPs identified on A. marginale from bovine 
erythrocytes (reviewed by Kocan et al. 2000) . MSP1a, 
MSP4 and MSP5 are from single genes and are 
conserved within isolates (Visser et al., 1992; Oberle and 
Barbet, 1993; Oberle et al., 1993; Viseshakul et al., 
2000). However, MSP1b, MSP2 and MSP3 are encoded 
by polymorphic multigene families (Rurangirwa et al., 
2000; Viseshakul et al., 2000; de la Fuente and Kocan, 
2001; Kano et al., 2002). A. marginale infections persist 
in vivo by the simultaneous clearance and emergence of 
unique MSP2 and MSP3 variants as demonstrated by 
cyclic bacteremia and the immune selection for MSP2 
and MSP3 proteins (Brayton et al., 2003). MSP1a and 
MSP1b form the MSP1 complex and have been identified 
as adhesins involved in the infection of host cells 
(McGarey et al., 1994; de La Fuente et al., 2001; de la 
Fuente et al., 2003a). The intensive analysis of sequence 
variants of these MSPs is reflected in the accession list 
presented in Table 2 and few other genes have been 
described for A. marginale or A. centrale.  

Three fold more gene accessions are listed for B. bovis 
than for B. bigemina and the list of B. bovis accessions 
have been further sub- categorized to group antigen and 
ribosomal RNA related sequences separately (Table 2). 
Similarly to Anaplasma, it is evident that studies on 
Babesia have concentrated on major surface proteins or 
antigens, immuno-dominant antigens and genes which 
are expressed by polymorphic multigene families such as 
MSA-1, MSA-2, rhoptry associated proteins (Table 2; 
Dalrymple et al., 1993; Suarez et al., 1994; Hotzel et al., 
1997; McElwain et al., 1998; Fisher et al., 2001; Suarez 
et al., 2003; Wilkowsky et al., 2003). Other genes 
sequenced include those used in phylogenetic studies 
(described above), apicomplexan gene homologues, drug 
resistance genes and genes implicated in host invasion 
and/or survival (Silins et al., 1996; Lew et al., 2002b; Bork 
et al., 2004; Gaffar et al., 2004a; Gaffar et al., 2004b; 
Gaffar et al., 2004c). As demonstrated by the number of 
B. bovis GenBank accessions, this volume of research 
activity correlates with the economic importance of this 
parasite. 

 

GENOME SEQUENCING 

 

Table 2 contains a limited list of genes when considering 

 
 
 
 

 

the importance of these pathogens to the global cattle 
industry. Expressed sequence tag (EST) and genome 
sequencing projects will rectify this deficit of sequence 
data for both Babesia species and A. marginale. The 
sequencing of A. marginale strain, St. Maries (USA), is 
almost complete with currently 1197687 bp of the 1.25 
Mb genome completed (GenBank accession number 
NC_004842 – description only). DNA sequence and 
predicted proteins are available for BLAST at 
http://www.ncbi.nlm.nih.gov/sutils/genom _table.cgi but 
are not yet downloadable from Entrez at the National 
Centre for Biotechnology Information (ncbi).  

For B. bovis, 12565 EST clones have been sequenced 
(at October 2004) and are available for BLAST at the 
Sanger Centre web site: http://www.sanger.ac.uk/ 
Projects/B_bovis/. An B. bovis genome project has begun 
with no downloadable data currently available (http://www  
.vetmed.wsu.edu/research_vmp/babesia-bovis/). 

There are no current public announcements for EST or 

genome analysis of B. bigemina. 

 

FUTURE RESEARCH 

 

Here we have reviewed the molecular approaches which 
have been developed and applied to study the causative 
agents of bovine babesiosis and anaplasmosis. Although 
there are PCR tools to detect and compare species and 
strains, it appears that the application of novel 
technologies for Anaplasma and Babesia detection could 
still be further developed and improved. Specifically, PCR 
methods could be improved by the application of real time 
PCR, and novel tools such as diagnostic micro-arrays 
could be developed. Molecular based diagnostic 
applications are most effective when multiple pathogens 
can be detected in one assay. 

The main difficulty in studying gene function in these 
pathogens has been the limitations in maintaining and 
manipulating these organisms in vitro. More recently, cell 
culture techniques have advanced and the development 
of transfection systems for these organisms are also part 
of on-going research programs (Munderloh et al., 1996; 
Jackson et al., 2001; Kocan et al., 2003; Suarez et al., 
2004). Additionally, detailed genome data will soon be 
available for at least A. marginale and B. bovis and 
methods to study the expression of genes or the analysis 
of gene knockouts are still required to validate genes as 
potential drug targets or vaccine candidates. 

Full genome sequence data will enable the comparison 
of genomes with other related annotated genomes 
(Plasmodium and Rickettsia spp.) as well as the 
development of genome microarrays which will facilitate 
comprehensive gene expression studies (Boothroyd et 
al., 2003; Conway and Schoolnik, 2003). Additionally, 
the completion of the bovine genome 

(http://www.hgsc.bcm.tmc.edu/projects/bovine) in 2005 
and availability of tick genome sequences (eg. B. 
microplus USDA/TIGR) will allow the comparative 



  

 

Table 2. List of A. centrale, A. marginale, B. bovis, and B. bigemina GenBank accessions (October 2004). 
 

Species Gene(s) Accession numbers
1
 

A. centrale 16S rDNA AF283007; AF309869; AF318944; AF414868; AF414869 
 citrate synthase AF304141 
 glutathione synthetase D-alanine ligase M80425 
 Heat shock protein 60 AF414866; AF414867 
 Heat shock protein 70 AY188684 
 Major surface protein 2 AY040556-AY040563; AY132307 
 Major surface protein 3 AY586402 
 Major surface protein 4 AY428090; AY054383 
 Major surface protein 5 AY054384 
 unknown AF352558 

A. marginale NC_004842 whole genome shotgun sequence, 1197687bp St. Maries strain, unfinished 
 16S rDNA M60313; AF309868; AF309867; AF311303; AF414871- AF414873; 
  AF414875-AF414878; AF309866; AJ633048; AY048816 
 23S-5S intergenic spacer AY048815 
 ana29 AY220298 
 ana37 AY220300 
 ana43-like AY220299 
 citrate synthase gene AF304139; AF304140 
 ftsZ gene AJ010274 
 HSP60 AF165812; AF414859-AF414865 
 inorganic pyro-phosphatase gene AF417515 
 Major surface protein 1a M32868-M32871; AF293062-AF293064; AF345867-AF345871; AF407542- 
  AF407545; AF461133; AF461134; AF352559; AF352560; AF428091- 
  AF428094; AY010242-AY010247; AY127052-AY127064; AY191826; 
  AY245429; AY253141; AY253144; AY283198-AY283200; AY295077; 
  AY355282-AY355284; AY489564; AY602768 
 Major surface protein 1b (and msp1b M59845; AF110808-AF110810; AF111195; AF111197; AF112480; 
 pseudogenes) AF221691- AF221693; AF348137; AF348138 
 Major surface protein 2 U36193; AF107766; AF107767; AF200925- AF200927; AF227261- 
  AF227271; AF290590- AF290599; AF317720- AF317726; AF402257- 
  AF402279; AF540581-AF540593; AF354464-AF354486; AY138955- 
  AY138958; AY241665-AY241668 
 msp2 and msp3 pseudogenes AF305077; AF305503-AF305508 
 Major surface protein 3 U60778- U60780; AF527422- AF527433; AF540565-AF540580; AY127883- 
  AY127898; AY128095- AY128099; AY129828 
 Major surface protein 4 L01987; AF428081-AF428089; AY010246; AY101248-AY010254; 
  AY127065-AY127078; AY191827; AY253142-AY253143; AY283189- 
  AY283192; AY283194-AY283197; AY456001-AY456003; AY714546 
 Major surface protein 5 M93392; AY245428; AY527217; AY714547 
 RNA polymerase beta subunit AF389472 
 transcriptional regulator+msp2 AY132308; AY132310-AY132314 
 tRNA-Arg gene AF081791 

B. bigemina 12D3 antigen A23051 
 18S rDNA X59604; X59605; X59607; AY648884 
 200kDa antigen AF142406 
 aldo-keto reductase M93122 
 apocytochrome b AF109354 
 Bbg 2.1 antigen M81569 
 Bbg1.1 antigen M81568 
 beta tubulin AJ289252 
 Heat shock protein (small) gene AF332566; AF332567 
 Intergenic spacer region rDNA AJ538183 
 merozoite surface antigen p58 M60878; M85184-M85187 
 merozoite surface protein gp45 AF298630-AF298632 
 plastid AF040968 
 rhoptry associated protein AF014486; AF014757-AF041768; AF017284-AF017298; AF021246; 
  AF021247; AF021798; AF026272 
 rhoptry protein gene AY146979-AY1146987 
 Unknown AJ538180-AJ538182; S45366  



   

Table 2. Contd.   
    

 B.bovis
2
 SURFACE ANTIGENS/PROTEINS:  

   12D3 antigen A23049 
   85 kDa merozoite protein gene M99575 
   225kDA variable antigen (BvVA1) M80466; M87623; M87624; M80426 
   Antigen M29838 
   Apical membrane antigen 1 AY486101 
   ATP-binding protein U44917-U44919 
   Bv80 merozoite protein/ Bb-1/80kDa A49229; M93125; M93126 
   merozoite surface antigen –1 (MSA-1) AF275908-AF275911 
   MSA-2/44kda merozoite surface M80467; AY052538-AY052542 
   antigen  

   merozoite surface protein - pBv42 M77192 
   merozoite surface antigen - 60kDa M38218 
   rhoptry associated protein-1 L77245; L77326; AF027149; AF030053-AF030062 
   rhoptry protein A16428; L00958-L00961; M91177-M91178 
   RNA GENES AND PROTEINS:  

   BabR locus K02832-K02834 
   phosphoriboprotein P0 AF498365 
   ribosomal protein L12eI/Acidic M81359; S35440 
   ribosomal protein P2  

   60s ribosomal protein L35; nucleoside U34076; U44917; AY170917-AY170919 
   monophosphate kinase, mitochondrial  

   protein; ATP binding protein  

   small subunit rRNA; 18S rDNA L19077; L19078; M87566; U06105 
   ss rRNA (extrachromosomal) S57861 
   glutamine-dependent carbamoyl- U18792 
   phosphate synthase  

   OTHER:  

   Actin AF410769 
   apocytochrome b gene AF053002 
   beta tubulin gene L00978; AJ289247 
   Coronin-like protein AY324186 
   DnaJ homolog AF017149 
   HMG-containing protein 1 JQ1490 
   hsp (small) gene AF331455 
   Hsp70 AF107118 
   Hsp90 AF136649 
   iron-dependent superoxide dismutase U70130; U70131 
   L-lactate dehydrogenase AB112429 
   long-chain acyl-CoA synthetase AF331454; AY534753 
   membrane protein; dihydrofolate AY302755; AF333764 
   reductase; thymidilate synthase genes  

   (N)-methyl-aspartate receptor AF275908; AF275912 
   Myosin genes AF273862- AF273868; AF403045-AF403047 
   non-histone protein M81360 
   phosphomannomutase AF027149; AF028591 
   Ras GTPase subclass Rab AY324134-AY324138 
   spherical body protein 4 (SBP4) AF486506; AF486507 
   spherical body protein 3 (SBP3) AF107117 
   thrombospondin-related anonymous AY486102 
   protein  

   unknown A27286; A27290; A27292; A27294 
   Variant erythrocyte surface antigen-1a AF173158-AF173161; AF195549-AF195570; AY279553-AY279559  

1
A dash between accession numbers denotes a series of related accession numbers. 

2
Not including expressed sequence tag – accessed at the Sanger Centre at http://www.sanger.ac.uk/Projects/B_bovis. 



 
 
 

 

analysis of pathogen:host and pathogen:vector 
interactions. Also applicable to eucaryotic gene 
expression systems is the potential to utilise gene 
silencing/RNA interference (RNAi) as a reverse genetic or 
gene knockdown tool. RNAi silences genes by a natural 
mechanism using stable dsRNA to trigger messenger 
RNA (mRNA) destruction. This mechanism has evolved 
to protect genomes from exogenous (viral) or 
endogenous (transposon) threats and can also participate 
in the cellular control of gene expression and 
development (Cogoni and Macino, 2000). Recently Ullu 
et al. (2004) reviewed the RNAi mechanisms in protozoan 
species. Through evidence compiled from both genome 
data mining for RNAi gene homologues and specific 
dsRNA gene silencing experiments, they suggested that 
not all apicomplexan species possess RNAi capability 
(Ullu et al., 2004). Our preliminary investigations treating 
B. bovis merozoites with B. bovis myosin-A specific long 
dsRNAs and chemically synthesised small interfering (si) 
RNAs have demonstrated a subsequent decrease in the 
ability of dsRNA treated merozoites to re-invade red cells 
in an in vitro B. bovis culture system compared with un-
treated merozoites (Lew and Jackson, unpublished data). 
Similar experiments with P. falciparum culture systems 
have shown a down-regulation of genes (McRobert and 
McConkey, 2002; Malhotra et al., 2002). However, data 
mining has failed to identify RNAi genes in the 
Plasmodium genome sequence (Ullu et al. 2004). When 
the B. bovis genome sequence is available, this will 
enable further investigation and study of potential RNAi 
gene homologues. Additionally, the combination of RNAi 
and microarray analysis will also prove useful for the 
understanding of gene regulation networks (Semizarov et 
al., 2004). 
 

A fully annotated Anaplasma genome will be available 
sooner than for Babesia and this data will be beneficial 
towards the development of improved control methods 
(Kocan et al., 2003). Most of the vaccine candidate 
research to date has concentrated on exploiting immuno-
dominant antigens/proteins, however it has been 
suggested that hidden antigens may be more efficacious 
potential vaccine candidates (Newton and Meeusen, 
2003; Nielsen et al., 2003). Alternatively, genomic host 
and pathogen analyses may elucidate possible novel host 
immune defence mechanisms which could be used to 
develop protective treatments (Wilkowsky et al., 2003; 
Brown et al., 2004; Norimine et al., 2004). Indeed, RNAi 
may be exploited to protect the bovine host from 
pathogen invasion by manipulating the host immune 
system as proposed for human disease therapeutics 
(Wall and Shi, 2003; Caplen, 2004; Lee and Rossi, 2004). 
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