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Few studies have established the variables which adequately predict SOC storage in the Miombo 
woodlands. Multiple regression analysis was used to establish the variables which could predict SOC 
contents in dominant soils of the Miombo woodlands of Kitonga Forest Reserve, Tanzania. Thirty soil mini-
pits located at different elevations across a topographical gradient were selected, geo-referenced, 
excavated and samples from the natural horizons were collected for physico-chemical analysis.  A total of 
85 samples were collected, each representing a natural soil horizon. The results indicated that total 
nitrogen (TN), (P< 0.001, R

2 
= 0.97) and TN in combination with calcium (Ca) (P< 0.001, R

2 
= 0.99) were 

important predictor variables of SOC contents. The combination of cation exchange capacity, Zinc, Copper, 
clay and iron together with TN and Ca predicted well the SOC contents (P< 0.001, R

2 
= 0.999). Considering 

time and cost implications for field and laboratory analysis in predicting SOC stocks, the combination of TN 
and Ca that predicted the SOC contents by 99% provided equally strong prediction when compared to the 
combination of all the variables. Thus, proper land management strategies which enhance conservation of 
TN and Ca in concert would provide adequate prediction of SOC contents in soils.  
 
Key words: Miombo woodlands, predictor variables, soil organic carbon contents, multiple regressions, Kitonga 
Forest Reserve, Tanzania.  

 
 
INTRODUCTION 
 
It is recognized that forest ecosystems, globally store 
about 40% of organic carbon, with 11% of the carbon 
being stored in forest soils (Negi et al., 2013; Yuan et al., 
2013). As the largest reservoir of terrestrial carbon, soils 
play a role in the regulation of global warming and 
greenhouse gas effects (Aticho, 2013; Stockmann et al., 
2013; Jandl et al., 2014). Globally, soils store about 1.5 x 
10

12
 tons of carbon (organic and inorganic), of which 

about 1.1 x 10
12

 tons are found in forest soils (Aticho, 
2013; Negi et al., 2013).  Due to the relatively long 
residence times provided by the humic substances found  
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in the SOC, soils are a potentially important long term 
natural sink of carbon (Lal, 2009; Bruun et al., 2010; 
Schmidt et al., 2011; Guimaraes et al., 2013), thus 
contributing to climate change regulation. 

The amounts of SOC storage across a landscape are 
variable among soil types, elevation, slope position, soil 
texture, site characteristics, soil depth, vegetation types 
and climate (Lal, 2005; Attua, 2009; Aticho, 2013; 
Hoffmann et al., 2014). Due to large spatial variations of 
SOC contents across landscapes, assessing the current 
state of SOC, especially for large tracts of land, is costly 
and time consuming (Jha et al., 2014; Nocita et al., 
2014). Few studies exist on the identification of variables 
that are likely to influence the stocks of SOC using 
multiple regression models (Meersmans et al., 2008; 
Attua, 2009; Nocita et al., 2014). Understanding the mec- 
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hanisms of, and the variables influencing SOC dynamics 
in Miombo woodland soils is important to identifying and 
enhancing natural sinks for C sequestration to mitigate 
the challenges of climate change.  

The practice of identifying few variables that predict 
SOC stocks optimally, cost effective and time efficient 
would enhance the process of designing management 
strategies to increase SOC storage to mitigate the effects 
of, and to adapt to, climate change. This is important 
within the Miombo woodlands ecosystem, which covers 
about 32 million hectares, or 93% of the total forested 
land area and about 40% of total land, in Tanzania. Such 
adaptation would enhance continued provision of diverse 
ecosystem services to support livelihoods (Nshubemuki 
and Mbwambo, 2007; FAO, 2009; Woollen et al., 2012). 
Thus, identifying a minimum set of variables that could 
accurately predict SOC stocks in a timely and resource-
efficient manner would constitute a substantial 
contribution to new knowledge in this branch of science. 

The overall aim of the study reported here was to 
identify variables which determine predictor variables of 
SOC contents in the dominant soil types in the Kitonga 
Forest Reserve (KFR), Tanzania, and select the cost 
effective and time saving variables which could predict 
the SOC contents optimally. The results would provide for 
extrapolation to other areas with similar soil types and 
similar ecological conditions. The working hypothesis of 
the study was that linkages between C storage and 
predictor variables influencing SOC in the identified soil 
types could be used to explain carbon stocks in other 
soils under similar ecological conditions. 

The data obtained would provide vital information on 
soil carbon stocks predictor variables in Miombo 
woodlands in the view point of saving financial resources 
and time. This would be of help to policy makers and 
other stakeholders in designing interventions to reduce 
deforestation and forest degradation (REDD+), and 
enhance sustainable SOC storage in soils as a result of 
improved soil/land management practices.   
 
 
MATERIALS AND METHODS 
 
Study Site  
 
Pertinent features of the KFR (07°35' - 07°43'S; and 
37°07' - 37°10'E) in Kilolo District, Iringa Region, 
Tanzania, are summarized in Table 1. The area covers 
52 km

2 
and consists of moderate to very steep slopes, 

with altitude ranging from 660-1880 m above sea level. 
Cambisols (Inceptisols) and Fluvisols (Entisols) in the 
medium to steep slopes and Leptosols (Entisols) in the 
lower slopes are the dominant soil types of the area 
(Shelukindo et al., 2014). Climatic data from 1981 to 
2012 which shows the monthly maximum, minimum and 
mean temperatures, monthly rainfall and mean annual 
rainfall have been addressed by Shelukindo et al. (2014). 

The dominant vegetation types across the study area are 
also shown in Table 1. 
 
 
Sampling Procedure  
 
A systematic sampling method (line transect) was 
employed to collect soil samples by establishing plots 
across different elevations. All plots were located on well-
drained soils across elevation gradients, taking into 
consideration the aspect factor. 
 
 
Soil Sampling  
 
Within each dominant soil type a 20 x 20 square m plot 
was set out, and partitioned into four 10 m by 10 m 
quadrants. In each quadrant of 10 m by 10 m, one point 
was randomly selected for collecting soil samples. Soil 
samples from these points were collected from excavated 
natural horizons to a limiting layer and soils from similar 
horizon from the four sampled quadrant mini-pits were 
mixed to obtain composite samples for the different 
horizons. Such 20 m x 20 m square plots were replicated 
three times. Sub-samples from each natural horizon were 
mixed together to make bulk samples of about 2 kg for 
physical and chemical analysis in the laboratory.  
 
 
Soil Analysis 
 
In the laboratory, soil samples were air dried to constant 
weight, ground and sieved through a 2 mm sieve to get 
the fine earth fraction ready for laboratory analysis. The 
bulk density was determined using the core method 
(Black and Hartge, 1986), and texture was determined by 
the hydrometer method (Day, 1965). Organic carbon was 
determined by the wet oxidation method (Nelson and 
Sommers, 1982). Total N was determined using the 
micro-Kjeldahl digestion-distillation method as described 
by Bremner and Mulvaney (1982). Extractable 
phosphorus was determined using filtrates extracted by 
the Bray and Kurtz-1 method (Bray and Kurtz, 1945) and 
determined by spectrophotometer (Watanabe and Olsen, 
1965). The exchangeable bases (Ca

2+
, Mg

2+
, Na

+ 
and K

+
) 

were determined by atomic absorption 
spectrophotometer (Thomas, 1982). The micronutrients 
Fe, Mn, Zn and Cu were extracted using buffered 0.005M 
DTPA (Diethylene triamine pentaacetic acid) (Lindsay 
and Norvell, 1978) and their concentrations determined 
by an Atomic Absorption Spectrophotometer (AAS) 
(UNICAM 919 model. The SOC stocks were calculated 
based on the formula given by Spiota and Sharma 
(2013): 
SOCst = % SOC/100 x BD x D x 100 
where: SOCst is the soil organic carbon stocks (Mg C ha

-

1
), SOC is the soil organic carbon concentration  (%),  BD  
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Table 1. Site characteristics of Kitonga Forest Reserve.  
 

Item Description/Value 
Location Kilolo Disrtict, Iringa Region 

Latitude/Longitude 07°35' - 07°43' S - 37°07' - 37°10' E 

Altitude (masl) 660- 1880  

Mean Annual Rainfall (mm) 540- 734  

Annual mean Temperature (
o
C) 12.0 - 29.0  

Size of the study area (km
2
) 52  

Parent material In situ weathering of biotitic gneiss and muscovite quartz  

* Soil type Cambisols, Fluvisols, Leptosols 

Sand (%) (surface horizon) 57 (Cambisols) - 85 (Fluvisols and Cambisols) 

Silt (%) (surface horizon) 4.6 (Leptosols and Cambisols  – 10.6 (Fluvisols) 

Clay (%) (surface horizon) 10.3 (Fluvisols and Cambisols – 34.3 (Cambisols) 

Bulk density (g/cm) (surface horizon) 1.0 (Leptosols) - 1.23 (Fluvisols) 

pH (surface horizon) 5.1 (Fluvisols and Cambisols) - 6.2 (Fluvisols) 

SOC (%) (surface horizon) 0.4 (Cambisols and Fluvisols) – 4.4 (Leptosols) 

Dominant trees spps. Brachystegia, Julbernardia, Diplorhynchus and 
Condylocarpon 

Dominant grasses Andropogon, Heteropogon 

Dominant shrubs Fadogia spp. 

Dominant herbs Commelina africana 

* FAO classification system 
  

 
is the bulk density (g cm

-3
), D is the horizon thickness 

(cm) and 100 is the multiplication factor to convert the 
SOC from g cm

-2
 to Mg C ha

-1
. The carbon stocks in each 

dominant soil type were obtained by the summation of C 
stocks of each natural soil horizon to the soil depth of 60 
cm.  
 
 
Statistical Analysis 
Pearson’s correlation analysis 
 
Pearson correlation (r) is a measure of the 
linear correlation between the SOC (%) (dependent 
variable, Y) and other variables (independent 
variables, Xn), and has a value between +1 and −1 
inclusive. Correlation value of 1 is total positive 
correlation, 0 is no correlation, and −1 is total negative 
correlation. These correlations are used to measure the 
degree of linear dependence and the strength of the 
relationship between variables (Kinnear and Gray, 1999; 
Attua, 2009).  

All the soil variables (TN, Ca, CEC, Cu, Zn, Fe Mg, Mn, 
K, P, K, % clay, % silt, % sand and elevation) were 
correlated with SOC using Pearson’s correlation analysis, 
of the model: 

 
r =  
 
where: r is the Pearson’s coefficient of correlation 
x: Predictor variable (Independent variable), i.e. TN, 
cation exchange capacity (CEC), and the various 
chemical elements.  
y: Predicted SOC content of a soil (dependent variable) 
n: the number of pairs of data (x, y). 
∑: summation sign. 
 
The variables correlated with SOC would be used in step-
wise multiple regression analysis for predicting the SOC 
contents. Bryman and Cramer (1997) and Kinnear and 
Gray (1999) similarly used Pearson’s correlation matrix 
when sorting out suitable predictor variables for 
regression analysis, as well as finding inter-correlated 
variables to be considered in regression analysis. 
 
 
Linear regression analysis between SOC contents 
and individual predictor variables 
 
Potential predictor variables, that is, the different soil 
properties, in attempts at predicting SOC  contents,  were  

n (∑x2) – (∑x) 2     n(∑y2) – (∑y)2    

 

n∑xy – (∑x) (∑y)     

 

http://www.quickiwiki.com/en/Correlation
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Table 2. Pearson correlation matrix for variables which contribute to SOC.  

 

Variable SOC CEC TN 

 
 
Ca Bray-1 P 

 
 
K 

 
 
Mg 

 
 
Na 

 
 
Mn Cu 

 
 
Zn Fe 

 
 
Sand Clay 

 
 
Silt 

 
 
Elevation 

SOC 1 
  

 

 

    

 

 

 

 

 

  

CEC 0.97** 1 
 

 

 

    

 

 

 

 

 

  

TN 0.99** 0.96** 1  

 

    

 

 

 

 

 

  

Ca 0.99** 0.97** 0.99** 1 

 

    

 

 

 

 

 

  

Bray-1 P 0.80** 0.78** 0.82** 0.78** 1     

 

 

 

 

 

  

K 0.83** 0.85** 0.83** 0.79** 0.81** 1    

 

 

 

 

 

  

Mg 0.94** 0.97** 0.93* 0.95** 0.65** 0.79** 1   

 

 

 

 

 

  

Na 0.18
ns

 0.23* 0.2* 0.26* 0.27* - 0.1
ns

 0.19
ns

 1  

 

 

 

 

 

  

Mn 0.82** 0.73** 0.85** 0.84* 0.64** 0.68* 0.75** 0.05
ns

 1 

 

 

 

 

 

  

Cu 0.91** 0.91** 0.91** 0.92** 0.69** 0.67** 0.92** 0.34** 0.71** 1  

 

 

 

  

Zn 0.97** 0.96** 0.80** 0.98** 0.80** 0.77** 0.96** 0.27* 0.75** 0.97** 1 
 

 

 

  

Fe 0.97** 0.92** 0.98** 0.98** 0.89** 0.77 0.93** 0.17
ns

 0.71** 0.88** 0.96** 1  

 

  

Sand - 0.37** - 0.5** - 0.36** - 0.35** - 0.15
n
 - 0.53** -0.42**  - 0.21* - 0.59** - 0.48** 0.41** - 0.26* 1 

 

  

Clay 0.44** 0.56** 0.44** 0.42** 0.18* 0.52** 0.48** 0.30** 0.64** 0.58** 0.5** 0.32** 0.98** 1   

Silt 0.63** 0.75** 0.61*’ 0.6** 0.33** 0.76** 0.67** 0.08
ns

 0.63** 0.69** 0.67** 0.52** 0.87** 0.88** 1  

Elevation 0.3
n
 0.07

n
 0.02

n
 - 0.007

n
 0.01

n
 0.23* 0.04

ns
 - 0.22* 0.12

n
 -0.04

n
 -0.01

n
 0.02

n
 - 0.3** 0.24 * 0.27* 1 

 

* Correlation is significant at the 0.05 level  
** Correlation is significant at 0.01 level  
n
 No correlation  

 
 
subjected to regression analysis to study their individual contribution in 
predicting SOC, as indicated by R

2 
values. The linear regression model used 

was: 
Yi= β0+ β1Xi+ €,    for i =1, 2, ..., n. 
The model is valid for all n pairs of observations (X1, Y1), (X2, Y2)…….. (Xn, 
Yn) 
 

where:  Yi = Predicted SOC content of a soil (dependent variable) 
Xi: Predictor variable (Independent variable), i.e. TN, cation exchange 
capacity (CEC), and various chemical elements.  
β0: = Intercept (a constant) for the relationships between X and Y 
β1: Regression coefficients of the variable that influence SOC contents in the 
relationships between X and Y. 

€ is the noise or error associated with the SOC values 
The model is called linear or simple regression because there is just one 
predictor variable in the model with linear β0 and β1 parameters.  

Linear regression has the limitation that it handles one dependent variable 
at a time. A combination of variables cannot be factored into the model. 
Therefore, multiple regression analysis was undertaken to evaluate the 
contribution of combined variables. 
 
Multiple regression analysis 
 

The variables that showed significant Pearson’s correlations with SOC 
contents were subjected to stepwise forward multiple regression analysis, 
using the Statistical Analysis System (SAS) version 9.2 software.
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Table 3.  Results of prediction of SOC by linear regression analysis.  
 

Predictor variable n R
2
 Regression equation Predicted SOC, (%) 

Min. Max. 

Total Nitrogen (TN) 85 0.79** Y = 0.005 + 14.22N 0.14 3.84 

CEC 85 0.71** Y = - 0.57 + 0.19CEC 0.04 3.12 

Ca 85 0.62** Y = 0.27 + 0.34Ca 0.21 3.46 

Zn 85 0.58** Y = 0.28 + 1.49Zn 0.31 3.44 

Cu 85 0.20** Y = 0.82 + 0.31Cu 0.83 2.61 

Clay 85 0.03** Y = 0.72 + 0.12Clay 0.84 1.57 

Fe 85 0.22** Y = 0.65 + 0.006Fe 0.65 2.69 

Observed SOC (%) 85 -                - 0.1 4.4 

 

** Predictor variable is significant at the 0.01 level.   

 
 
 
 
The SOC (%) data from eighty five soil samples, 
representing the natural horizons from the thirty mini-pits 
(up to 60 cm depth) were factored into the model for 
analysis. Multiple linear regressions using the stepwise 
method (Blanchet et al., 2008; Attua, 2009; Spiota and 
Sharma, 2013) were used to describe the effects of 
various independent variables on SOC contents as the 
dependent variable. The model employed was as 
described hereunder: 
Yn = a + b1 X1+ b2 X2 +...bn Xn + € 
where: Yn = Predicted SOC content of a soil, % 
(dependent variable). 
 X1, X2, Xn = Variables which influence SOC contents 
(independent variables), i.e. sand content, % slope, total 
nitrogen (TN), elevation, cation exchange capacity 
(CEC), and various chemical elements.  
 a = Intercept (a constant) for the relationships between X 
and Y 
 b1, b2,..…….bn = Coefficients of the variables that 
influence SOC contents in the relationships between X 
and Y. 
€ is the noise or error associated with the SOC values. 
The goodness of fit of the model was based on R

2 
and 

probability levels.
  

The step-wise regression analysis was used to select 
significant variables, by either accepting or eliminating 
the respective predictor variables, based on the 
probability level (P-value). A predictor variable associated 
with a P-value less than the predetermined significance 
level was added; otherwise the variable was dropped. 
Data on SOC were first log-transformed in order to 
improve the normality of variables before they were 
factored into the model for analysis (Roberts, 2008). The 
model results are expected to contribute a guiding 
support tool for predicting SOC storage in different soil 
types in the Miombo woodlands with similar agro-
ecological conditions. 

RESULTS AND DISCUSSION 
 
Pearson’s Correlations between SOC contents and 
possible predictor variables 
 
The results of the Pearson’s correlation matrix (Table 2) 
showed high (P< 0.01) positive correlation between SOC 
and total nitrogen (N), calcium (Ca), cation exchange 
capacity (CEC), zinc (Zn), iron (Fe), magnesium (Mg) and 
copper (Cu). In addition, relatively low positive correlation 
(P< 0.01) was indicated between SOC contents and 
potassium (K), manganese (Mn), phosphorus (P), silt and 
clay, whereas low negative correlation was indicated 
between SOC and sand (P< 0.01). The positive 
correlations imply that as the master variable of soil 
fertility, SOC correlates with most soil nutrients because 
soil organic matter (humus) adsorbs these nutrients.  
Metallic nutrients carry positive charges, thus are 
attracted to the negative charges (dissociated functional 
groups) of soil organic matter (Lu et al., 2012; Ferreiro et 
al., 2014). The positive correlation with P is due to the 
fact that P can be specifically adsorbed by soil colloids, 
including humus (Guppy et al., 2005; Criquet et al., 
2007).  

Specific adsorption is defined as the process in which 
atoms, ions or molecules of a substance collect on the 
surface of another substance, such as a solid, without 
entering into the solid's minute spaces as in absorption. 
Those ions adsorbed below the point of zero charge are 
concentrated at the interface, without the participation of 
electrostatic forces, and are therefore considered to be 
specifically adsorbed (Wisniewska et al., 2014). 
Phosphate is one of the ions that can be specifically 
adsorbed, hence the positive correlation between Bray-1 
P and SOC (Table 2). Similar relationships, between 
SOC contents and some of those variables above, have 
also been established by others (Attua,  2009;  Fu  et  al.,  
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2010; Tian et al., 2010; Jiménez et al., 2011; Chang et 
al., 2012; Vågen and Winowieck, 2012; Laurent et al., 
2014). 
 
 
Predictor variables of SOC contents using linear 
regression analysis  
 
The results of regression analysis for predicting SOC 
contents are presented in Table 3. Out of 15 predictor 
variables factored into the linear regression model, seven 
variables predicted SOC to varying degrees (R

2 
values).  

These seven variables, which were significant (P<0.01) in 
predicting the SOC contents, were TN, Ca, CEC, Zn, Cu, 
clay and Fe. Total N had the largest contribution (R

2 
= 

0.79**) in predicting SOC. This was followed by CEC (R
2 

= 0.71**) and Ca (R
2 

= 0.62**), with smaller contributions 
by each of the other metallic elements. The comparison 
between the observed SOC (%) (Shelukindo et al., 2014) 
and the predicted SOC (Table 3) showed that TN had the 
closest values between observed and predicted SOC. 
The predicted values ranged from 0.14% (Profile No. 7, 
Cambisol) to 3.84% (Profile No. 1, Cambisol). The 
observed values ranged from 0.1% (Profile No. 7, 
Cambisol) to 4.4% (Profile No. 6, Fluvisol). Despite the 
relatively smaller R

2
 value of 0.62** for the Ca compared 

to that of CEC (R
2 

= 0.71**), Ca predicted the SOC 
contents slightly better than CEC, probably due to its 
stronger binding ability with the negatively charged 
functional groups of organic matter (Gallon et al., 2010; 
Cotrufo et al., 2013), with the predicted values for Ca 
being in the range of 0.21 to 3.45% (Table 3). The extent 
to which prediction could be affected by combining the 
variables cannot be determined by simple linear 
regression. This was determined by multiple regression, 
as discussed in the following section below. 
 
 
Predicting SOC contents using multiple regression 
analysis 
 
From the results of the step-wise regression analysis, 
twelve equations for predicting the SOC in KFR were 
established as shown in Table 4. In the first equation, TN 
highly significantly (P<0.01) contributed 97% of the 
prediction of SOC contents, much more than was 
predicted by TN in linear regression. Inclusion of Ca in 
the model increased the prediction (P<0.01) of SOC 
contents from 97% to 99%. The combination of all seven 
variables (TN, Ca, CEC, Zn, Cu, Clay and Fe) predicted 
the SOC stocks (P<0.01) by 99.93%. Although the 
additional individual contributions of Ca, CEC, Zn, Cu, 
clay or Fe in the step-wise predictions of SOC contents 
were minimal (Table 3), their combination improved the 
accuracy in predicting SOC over TN alone by an 
additional 3.3%. These results show that TN was the 
strongest predictor of SOC contents, followed by TN + 

Ca, with smaller contributions made by each of the other 
variables.  
 
Total N as the first predictor of SOC contents 
 
Multiple regression analysis showed that the prediction of 
SOC contents was influenced highly (P< 0.001, R

2
 = 

0.97) by nitrogen. This largest contribution of TN in 
predicting SOC contents may be explained by the fact 
that in the soil, N is one among the important integral 
components which form the complex structure of soil 
humic substances such as fulvic humic acids (Stevenson 
1994; Kleber and Johnson, 2010; Schmidtet al., 2011; 
Guimaraes et al., 2013). There can be no increase in soil 
organic carbon without first a proportionate increase in 
nitrogen (Chang et al., 2012; Laurent et al., 2014). This 
implies that there is a constant and close relationship 
between the nitrogen and organic carbon in soils. It is 
concluded that neither carbon and, hence, soil organic 
matter, nor nitrogen, can be appreciably increased or 
decreased without a corresponding change in the other, 
hence the profound contribution of N in predicting SOC. 
Thus, proper management of soil nitrogen eventually 
leads to increase in the SOC contents and stocks, which, 
if realized globally, will play a vital role in global climate 
change regulation. 

The results of the present study are consistent with 
findings of other researchers. A study conducted by Attua 
(2009) in Nigeria found that TN, CEC and leaf area 
together predicted 95% of the SOC. The study by Fu et 
al. (2010) in China reported that TN and SOC increased 
uniformly along a hill slope when there was no soil 
erosion. Sakin (2012), in the southeast Anatolia region, 
Turkey, reported a very high relationship between SOC 
and N (R

2
 = 0.99, P< 0.01). Cao et al. (2012) in China 

reported the transformed-log SOC of the 0-10 cm and 10-
20 cm soil layers to be well predicted by total N, with R

2
= 

0.86 (P= 0.006) and R
2
= 0.82 (P= 0.007), respectively. 

Thus, land management strategies aiming at enhancing 
TN will also improve the SOC contents, and this may 
have implications in global climate change regulation if 
undertaken or realized on a large scale. 
 
 
Calcium as the additional (together with TN) predictor 
of SOC contents 
 
The results (Table 4) also showed that the combination of 
Ca with TN was also a significant (P< 0.001, R

2 
= 0.99) 

SOC predictor. Of all the divalent ions in the ecosystem, 
calcium is the one that is strongly bound by both 
inorganic and organic anions (Gallon et al., 2010; Cotrufo 
et al., 2013). The stronger binding ability of calcium with 
organic anions makes it more superior than other divalent 
ions in predicting SOC contents. 
Chaudhari et al. (2012) in Haridwar, India, reported a 
significant (P= 0.01) positive correlation (correlation coef-  
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Table 4. Step-wise multiple regression equations for predicting soil organic carbon contents.  

 

Predictor variables R
2
 Regression equations 

Total N 0.9662** Y = 0.11 + 11.7 TN   

Total N + Ca 0.9902** Y = 0.17 + 17.95TN – 0.29Ca  

Total N + CEC 0.9705** Y = - 0.23 + 10.47TN + 0.1CEC 

Total N +Zn 0.9669** Y = 0.01 + 14.22TN + 0.01Zn  

Total N + Cu 0.9678** Y = 0.005 + 14.22TN + 0.1Cu 

Total N + Clay 0.9674** Y = 0.01 + 14.47TN + 0.0002Clay 

Total N + Fe 0.9665** Y = 0. 0 + 14.22TN + 0.0001 Fe 

Total N + Ca + CEC 0.9947** Y = - 0.04 +15.66TN - 0.32Ca + 0.05CEC  

Total N + Ca + CEC + Zn 0.9956** Y = - 0.11+ 14.75TN - 0.21Ca + 0.05CEC - 0.21Zn  

Total N + Ca + CEC + Zn + Cu 0.9974** Y = - 0.09 + 12.55TN – 0.06Ca + 0.04CEC – 0.51Zn + 0.25Cu  

Total N + Ca + CEC + Zn + Cu + Clay 0.9988** Y = -0.05 + 13.04TN – 0.15Ca + 0.06CEC – 0.55Zn + 0.38Cu – 0.01Clay  

Total N + Ca + CEC + Zn + Cu + Clay + Fe 0.9993** Y = – 0.07 + 11.97TN – 0.17Ca + 0.07CEC – 0.56Zn + 0.37Cu – 0.01Clay + 0.0001Fe  
 

** Predictor variable is significant at the 0.01 level.  

 
 
 
ficient (r) = 0.70) between SOC and Ca. Sapek (2013) in Poland reported that 
Ca uptake by plants increased with increasing concentrations of dissolved 
organic carbon in soil solutions, implying that the extra Ca was that bound 
and subsequently released by the organic matter. Thus, Ca, in combination 
with N, has a strong contribution in predicting SOC contents/stocks.  
 
 
Contribution of other variables in prediction SOC contents   
 
The results (Table 4) indicated that apart from TN and Ca, other additional 
variables (CEC, Zn, Cu, Clay and Fe), together with TN and Ca, contributed 
to improvements in SOC prediction (P< 0.01, R

2
 = 0.999), although their 

incremental contributions were relatively small. 
A study conducted in West Africa by Attua (2009), showing that 95% of the 

variability in SOC was explained by CEC, TN and leaf area (LA) has already 
mentioned (above). Similarly, Orgill et al. (2014) in Australia reported that the 
SOC was correlated with CEC and N, while Samarian et al. (2013) in Iran 

showed that CEC, which was highly correlated with clay content and with soil 
organic matter, accounted by about 69% the SOC contents in soils. 

The binding of positive metal cations such Fe (Fe
3+

), Cu (Cu
2+

) and Zn 
(Zn

2+
) to anions such as dissociated carboxyl (COO

-
) and hydroxyl (OH

-
) 

groups of humic substances has also been reported by other researchers 
(Rovira and Vallejo, 2007; Guimaraes et al., 2013). Ibrahim et al. (2011) in 
Nigeria also reported a positive correlation between Cu and SOC and 
between Zn and SOC. This may account for the incremental contributions of 
these metals in predicting SOC. 

Sakin (2012), in southeastern Turkey, reported a strong relationship 
between SOC and clay (P< 0.001, R

2
=0.96). Plante et al. (2006) in Ohio and 

Saskatchewan found a statistically significant positive relationship (R
2
=0.48, 

P<0.01) between clay and SOC, as was similarly reported by Arrouays et al. 
(2006) in France.  

The novelty of the current study was the quantification of the contributions 
of the metallic elements and clay to the prediction of SOC, however small the 
incremental contributions were.  
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Table 5. Predicted SOC (%) following step-wise multiple regression analysis.  
 

Predictor variable n 

Predicted  SOC (%) 

Minimum Maximum 

Total N 85 0.13 3.78 

Total N + Ca 85 0.06 4.27 

Total N + CEC 85 0.17 3.65 

Total N +Zn 85 0.16 3.15 

Total N + Cu 85 0.15 3.45 

Total N + Clay 85 0.16 3.20 

Total N + Fe 85 0.14 3.13 

Total N + Ca + CEC 85 0.09 2.98 

Total N + Ca + CEC + Zn 85 0.06 3.04 

Total N + Ca + CEC + Zn + Cu 85 0.11 3.58 

Total N + Ca + CEC + Zn + Cu + Clay 85 0.05 3.80 

Total N + Ca + CEC + Zn + Cu + Clay + Fe 85 0.13 4.63 

  Observed SOC  ( % ) 85 0.1 4.4 

 
 
 
 
Predicted values of SOC from multiple regression 
analysis 
 
Table 5 shows the predicted SOC (%) values using the 
step-wise multiple regression analysis. The observed 
SOC results showed that the minimum and maximum 
SOC (%) of the soils were 0.1 and 4.4, respectively. This 
was closely predicted by TN, with the minimum SOC 
value being 0.13% (Profile No.9, Cambisol) and the 
maximum being 3.78% (Profile No.6, Fluvisol). The 
prediction by TN + Ca ranged from 0.06% (Profile No.9, 
Cambisol) to the maximum value of 4.27% (Profile No.1, 
Cambisol).  

The prediction by the combination of TN with all the 
other variables ranged from 0.13% SOC (Profile No.9, 
Cambisol) to 4.63% SOC (Profile No.1, Cambisol). 
However, the predicted SOC values by TN + CEC were 
0.17% as the minimum (Profile No.8, Fluvisol) and 3.65% 
as the maximum (Profile No.1, Cambisol), which was 
relatively more out of range as compared to the observed 
values. Thus, TN in combination with Ca could be chosen 
as the more reliable predictor for SOC contents. The 
combination of all variables in the model had only a 
minimal improvement to the prediction of SOC contents 
as compared to the prediction by TN and Ca, and could 
be omitted without affecting the strength of the 
predictions. Thus, the combination of TN and Ca would 
save time and financial resources for the requisite field 
work and laboratory analysis, but would also provide 
equally strong SOC predictions, as it has demonstrated a 
strong congruence between predicted and observed SOC 
values (Table 5). 

 
 
CONCLUSIONS AND RECOMMENDATIONS 
 
Conclusions 
 
The results of this study indicated that the combination of 
TN and Ca was very strong in predicting SOC contents 
because it accounted by 99% the OC predictions. 
Inclusion of the other variables (CEC, Cu, Zn, Clay and 
Fe) in concert improved the SOC prediction by only 
0.009%. Hence, TN and Ca could be taken as the major 
predictors of SOC in the KFR. Table 5 showed that the 
predicted SOC (%) by TN in concert with Ca is closer to 
the observed SOC (%) values than the SOC predicted by 
the combination of all the variables. Therefore, these 
other characteristics can be omitted without affecting the 
strength of the predictions. Moreover, their omission will 
lead to a saving in time and financial costs for the field 
and laboratory analysis. Thus, in predicting SOC in 
Miombo woodlands, valuation of TN and Ca in soils could 
provide optimal information with the implications of saving 
time and financial resources.   
 
Recommendations  
 
 In-depth studies on the SOC storage in Miombo 

woodland soils should be undertaken to broaden 
our understanding of the dynamics of TN and Ca 
as quick and reliable predictors of SOC stocks. 

 It is recommended that sustainable forest and 
land management strategies in the KFR Miombo  
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woodland areas should put more emphasis on 
practices that may lead to the conservation 
and/or improvement of TN and Ca, which are the 
main predictors of SOC in the soils. 

 It is recommended that the findings of this study 
be tested/demonstrated in other areas with 
similar soil types, ecological conditions and 
vegetation types so as to validate their wider 
application. 
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