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The effectiveness of 2 bacterial isolates (Bacillus subtilis and Pseudomonas aeruginosa) in the restoration of oil-
field drill-cuttings contaminated with polycyclic aromatic hydrocarbons (PAHs) was studied. A mixture of 4 kg of 
the drill-cuttings and 0.67 kg of top-soil were charged into triplicate plastic reactors labeled A1 to A3, B1 to B3, C1 
to C3 and O1 to O3. These were left quiescent for 7 days under ambient conditions before adding to reactors A1 - 
A3 and B1 - B3 respectively, 20 ml working solution of pure cultures of Bacillus sp and Pseudomonas sp each of 
cell density 7.6 x 10

11
 cfu/ml. Another 20 ml working solution containing the both cultures at cell density 1.5 x 10

12
 

cfu/ml was added to reactors C1 - C3. The working solution was added to each reactor (excluding the controls, O1 - 
O3) every 2 weeks mixing and watering of the set-ups was done at 3 days interval under ambient temperature of 
30

o
C over a period of 6 weeks. After 6 weeks of treatment, results showed that the predominant 3-ring PAHs, which 

made up 90% w/w, of the total PAHs concentration of 223.52 mg/kg, were degraded below detection and the 4-ring 
PAHs were reduced from 4 to 0.6% by the Pseudomonas while the Bacillus reduced the 3 and 4-ring PAHs 
respectively to 0.2 and 0.8%. This showed that the Pseudomonas degraded the 3 and 4-ring PAHs relatively better 
than the Bacillus. Both strains of bacteria degraded the 5 and 6-ring PAHs below detection limits. Furthermore, 
within the 3-ring PAHs each of the strains of bacteria reduced phenanthrene to approximately 0.2%, whereas both 
degraded the homologues acenaphthylene, acenaphthene and fluorene as well as anthracene below detection 
limits. For the 4-ring PAHs, the Pseudomonas degraded fluoranthene and benzo[a]anthracene while the Bacillus 
also degraded benzo[a]anthracene below detection limits. The Pseudomonas was able to reduce pyrene and 
chrysene to 0.3 and 0.2% respectively; whereas the Bacillus reduced fluoranthene, pyrene and chrysene to 0.1, 0.01 
and 0.4% respectively. However, treatment with the mixed culture resulted in the limited degradation of the 5-ring 
PAHs particularly in the fourth week, which may be due to the phenomena of cometabolism and inhibition. The 
pseudo-first-order degradation rate constant of persistent PAHs ranged from 1.9 x 10

-4
 to 9.3 x 10

-2
 day

-1
. Statistical 

analyses of results, using the 2-factor analysis-of-variance, showed that the treatments applied resulted in 
significant (p < 0.05) differences in the biodegradation of the PAHs of the drill cuttings after the 6 weeks of 
treatment. 
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INTRODUCTION 
 
Drill cuttings are mixtures of rocks and particulates released 
from geologic formations in the drill holes made for crude oil 
drilling. Often, drilling mud and their additives are used in the 
drilling process and largely, influence the chemistry of the 
resulting drill cuttings, which are charac-terised by relatively 
high total hydrocarbon content (THC) (Okparanma and 
Ayotamuno, 2008) and polycyclic aromatic hydrocarbons  
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(PAHs) (DPR, 2002). PAHs are the class of hydrocarbons 
containing 2 or more fused aro-matic hydrocarbons. These 
compounds are environment tally harmful as they can be 
carcinogenic or mutagenic (Latimer and Zheng, 2003). 
Due to their abundance in the environment with 
comparatively simple detectability and toxi-city to 
mammals and aquatic organisms, the USEPA has in-
cluded in the priority list of pollutants 16 non-substituted 
PAHs as indicators of PAH pollution. They include naph-
thalene, acenaphthylene, acenaphthene, anthrax-cene, 
phenanthrene, fluorene, pyrene, benzo[a]anthraxcene, 
fluoranthene, chrysene, dibenzo[a,h]anthracene, benzo 



 
 
 

 

[b]fluoranthene, benzo[k]fluoranthene, benzo[a]py-rene, 
benzo[g,h,i]perylene and indeno[1,2,3-cd]pyrene (Latimer 
and Zheng, 2003). Therefore, it becomes imperative to 
have these drill cuttings treated before their disposal.  

Over the years, drill cuttings have always been treated 
by solidification and stabilization (Akinlade et al., 1996), 
thermal technologies using (among others) thermal de-
sorption units (TDUs) (Zupan and Kapila, 2000; RLC 
Technology Inc., 2004) and until recently, by bioremedia-
tion (KMC Oiltools, 2005). However, in a leachability test 
conducted after solidification / stabilization of the drill 
cuttings, Akinlade et al. (1996) observed that these pro-
cesses were able to remove only through encapsulation 
of metals like arsenic, barium, cadmium, chromium and 
lead. Apart from the high-energy demand and prohibitive 
costs of thermal treatment technologies (Shkidchenko et 
al., 2004), personnel and equipment are exposed to the 
resulting fugitive dusts (DWMIS, 2004). Because of these 
challenges, the use of a technology similar to remediation 
by enhanced natural attenuation (RENA) was proposed 
for the treatment of oil-field drill cuttings (KMC Oiltools, 
2005). But, the suggested specifications required for the 
successful execution of such an on-site project of land 

area 7.5 m
2
/metric ton and land specification having high 

seasonal water table, are likely to impose a limitation on 
its application due to recent upsurge in urbanization and 
industrialization. An alternative technology, which takes 
into account short operational time, low overall cost, less 
land mass and eco-sound approaches, becomes a con-
sequent tandem. To this end, bioremediation treatment 
like bioaugmentation may save time, incur comparatively 
low overall cost and could be conducted in a relatively 
small space resulting in sound ecological benefits. Bio-
augmentation involves the site-specific application of mi-
crobes like fungi, bacteria or their enzyme preparations to 
increase degradation rates of target contaminants as ex-
emplified in (Lo and Hung, 1995; Odokwuma and Dick-
son, 2003; Ouyang et al., 2005; Ayotamuno et al., 2007) 
for other contaminated media. This practice usually is 
employed when there is a deficiency of competent indi-
genous microbes in the polluted medium to degrade the 
contaminants as prevalent in drill cuttings contaminated 
with oil-based mud (OBM). Some of these specialized mi-
crobes can occur naturally while others can be reproduc-
ed in the laboratory. 
 

Therefore, assessing the effectiveness, in terms of per-
centage PAHs reduction, of 2 environmental bacterial iso-
lates (that is, Bacillus and Pseudomonas), individually 
and mixed, form the base of the present study. The com-
positional distribution of individual PAH fractions of the 
drill cuttings is also investigated, from which, the likely 
anthropogenic origin of the PAHs is deduced. 

 
MATERIALS AND METHODS 
 
The drill-cuttings 
 
Using plastic containers, properly sealed afterwards  with polyethy- 

 
 
 
 

 
lene materials, composite samples of the drill-cuttings were collec-
ted from a mud-pit close to a just-completed crude oil well in Niger 
Delta region (5º19≠N, 6º28≠E), Nigeria at standard atmospheric 
pressure for different treatment measures and analyses. Sampling 
was done strictly in line with DPR (2002) standards for quality 
assurance. The top-soil, which was obtained from within the resea-
rch campus of the Rivers state university of science and techno-
logy, Nkpolu, Port Harcourt, served as both nutrients and microbes 
carrier.  

Isolation, identification, enumeration and culture of suitable he-
terotrophic bacteria used in the investigation were done in the de-
partment of microbiology, Rivers state university of science and 
technology, Nkpolu, Port Harcourt. The working solution of the ap-
propriate colony-forming units (CFU) was prepared using serial dilu-
tion according to the procedures described in our earlier report 
(Ayotamuno et al., 2007). The bacterial culture was conveyed from 
the laboratory to the university research campus in a cooler and 

stored in a refrigerator, which was maintained at 4
o
C for subse-

quent use. 

 

Experimental design 
 
The bioaugmentation experiment was carried out in 4 triplicate plas-
tic containers labelled reactors A1 to A3, B1 to B3, C1 to C3 and O1 
to O3. The drill cuttings 4 kg and the top-soil 0.67 kg at cuttings to 
soil ratio of 6:1 (Ouyang et al., 2005) was mixed in each reactor and 
allowed to settle for 7 days for the commencement of microbial 
activity prior to the addition of working solution. The working solu-
tion 20 ml each of pure culture of Bacillus and Pseudomonas hav-

ing the cell density 7.6 x 10
11

 cfu/ml was added to reactors A1 to 
A3 and B1 to B3 respectively. Another 20 ml working solution 

contain-ing the mixed culture of cell density 1.5 x 10
12

 cfu/ml was 
added to reactors C1 to C3. The working solution was added to 
each reactor (excluding the controls, O1 to O3) after every 2 weeks, 
whereas mixing and watering of set-ups were done at 3 days 

interval under the ambient temperature of 30
o
C over a period of 6 

weeks. Com-posite samples from each reactor were taken, using 
hand trowel, at 2 weeks interval for laboratory analyses. 

 

Theory 
 
The rate of degradation of selected PAHs was carried out by com-
paring their reaction rate constants of the pseudo-first- order ki-
netics. According to Lagergren (1898), the integrated and li-
nearized pseudo-first- order kinetic expression is given as: 
 

log(Co  − Ct )  log Co  − 
K1 

t (1) 
 

2.303 
 

   
 

 

The value of the reaction rate constant, K1 was determined by 

regression analysis by fitting on a number of experiment-tal data 

points, using the LINEST function in Microsoft
®

 Excel 2007. 
 

 
Laboratory analyses 
 
The drill cutting samples were analyzed for polycyclic aromatic hy-
drocarbons (PAHs) according to the procedures of USEPA (1996) 
method 8270B using an AGILENT TECHNOLOGY Gas Chromato-
gram Model 6890N equipped with a flame ionization detector (FID). 
The THC of the drill cutting samples was analyzed according to 
standards of the ASTM (1999) method D3920 using a SHIMADZU 
infrared spectrophotometer by measuring the light absorbance at 
the wavelength range of 3333 - 3704 nm. Bonny light crude oil was 



 
 

 

used to calibrate the equipment before hand. 

 

Statistical evaluations 
 

Standard deviation (SD), using the STDEV function in Microsoft
®

 
Excel 2007 and simple percentages were calculated. Data analysis 
was performed using the 2-factor analysis of variance (ANOVA) 
with replication. The total variation of the data set was determined 
using equation (2) below: 
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limits. The predominant PAH ring-group in the drill cut-
tings is the 3-ring PAHs (representing 90% of the total 
PAHs) and consists of acenaphthylene, acenaphthene, 
fluorene, phenanthrene and anthracene. 
 
 
Biodegradation of PAHs in relation to ring-group and 
molar-mass 
 
The degree of degradation of individual PAHs in relation 
to molar-mass and ring groups over 6 weeks of bioreme-
diation showed distinct variations as depicted in Table 3. 
For 2-ring PAHs, characterized by identical molar-mass 
of 128 g/mol, their presence was short-lived as they were 
not detected after the first 2 weeks of remediation. In the 
case of 3-ring PAHs with molar-mass ranging from 166 – 
178 g/mol, the amount remained after the first 2 weeks of 
treatment ranged from 0.4 - 0.9%. In the remaining period  
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of treatment, the amount of 3-ring PAHs continued to de-
crease though not as much as in the initial weeks before 
plummeting to (0.1 - 0.8%) in the last week of the treat-
ment. On the other hand, the 4-ring homologues, ben-
zo[a]anthracene and chrysene with the molar-mass 228 
g/mol showed relatively lower losses all through the ex-
periment of 6 weeks. For the 5-ring PAHs, having molar-
mass ranging from 252 - 278 g/mol, they showed an al-
most similar tendency as exhibited by 4-ring PAHs. How-
ever, unlike 4-ring PAHs, 5-ring PAHs showed relatively 
lower loses especially towards the end of the treatment 
period, as their presence was undetected, except for ben-
zo [b] fluoranthene. PAHs of 6-rings with molar-mass of 
276 g/mol showed relatively lower lose as compared to 5-
ring PAHs, which occurred at the initial stage of the ex-  

The values of these variations, deduced with equations (2) to (7), 
were then used to set up the analysis-of-variance table. Using the 
appropriate degrees of freedom for each source of variability, the 
mean squares and F ratios were determined. The deduced F ratios 
were then compared with their corresponding critical F values. Sig-
nificance of differences was evaluated at p < 0.05. 

 

RESULTS 
 
THC and PAHs characteristics of the drill cuttings 

 

Characteristics of THC and PAHs of the untreated drill 
cuttings are presented in Table 1. It is evident from the 
Table that the level of THC in the drill cutting samples 
(that is, 82,195 mg/kg) far exceeded the discharge limit of 
50,000 mg/kg set by Nigerian government department of 
petroleum resources. This implies that the drill cuttings 
are not safe for land disposal without prior treatment.  

The PAHs are composed of 2 - 6 fused rings with mole-
cular mass ranging from 128 g/mol in naphthalene to 278 
g/mol in dibenzo[a,h]anthracene. The total PAH concen-
tration of the drill cuttings is 223.52 mg/kg. The most 
abundant PAH fraction is acenaphthylene (70.7 mg/kg, 
dry weight) while the least abundant is fluoranthene (1.67 
mg/kg, dry weight). Naphthalene and indeno [1,2,3-cd] 
pyrene are however, not within their laboratory detection 

 
periment. However, 6-ring PAHs behaved almost like 5-
ring PAHs in the weeks of the experiment. 
 
 
Comparison of PAH degradation by Bacillus and 
Pseudomonas 
 
The impact of bacterial isolates (Bacillus and Pseudomo-
nas), in terms of percentage of the PAH degraded over 
time, is shown in Figures 1 to 3. The predominant 3-ring 
PAHs, which made up 90% w/w, of the total PAHs con-
centration of 223.52 mg/kg, were degraded below detec-
tion and the 4-ring PAHs were reduced from 4 to 0.6% by 
the Pseudomonas (Figure 2) while the Bacillus (Figure 1) 
reduced the 3- and 4-ring PAHs respectively to 0.2 and 
0.8%. This showed that the Pseudomonas degraded the 
3- and 4-ring PAHs relatively better than the Bacillus. 
Both strains of bacteria degraded the 5- and 6-ring PAHs 
below detection limits (Figure 3). Furthermore, within the 
3-ring PAHs each of the strains of bacteria reduced phe-
nanthrene to approximately 0.2%, whereas both degra-
ded the homologues acenaphthylene, acenaphthene and 
fluorene as well as anthracene below detection limits 
(Table 3). For the 4-ring PAHs, the Pseudomonas degra-
ded fluoranthene and benzo[a]anthracene while the Baci-
llus also degraded benzo[a]anthracene below detection 



 
 
 

 
Table 1. THC and PAHs composition of the untreated drill cuttings sample.  

 
  Laboratory 

Value Ring Composition 
DPR (2002) 

 

 
Characteristics detection Discharge-  

Molar mass (mg/kg) group (%) 
 

 limit (mg/kg) limits (mg/kg)  

(g/mol)       
 

THC - 82,195 ± 302.52 - - 50,000 
 

 
 

   PAH fractions    
 

128 Naphthalene 1.00 nd  2-ring 1 - 
 

 2-Methylnaphthalene 0.20 1.96 ± 0.16    
 

166 Acenaphthylene 1.00 70.7 ± 0.23 3-ring 90 - 
 

 Acenaphthene 0.70 61.9 ± 0.22    
 

 Fluorene 0.70 36.9 ± 0.24    
 

178 Phenanthrene 0.20 21.4 ± 0.22    
 

 Anthracene 0.40 9.83 ± 0.17    
 

202 Fluoranthene 0.20 1.67 ± 0.19 4-ring 4 - 
 

 Pyrene 0.20 2.27 ± 0.21    
 

228 Benzo [a] anthracene 0.20 2.29 ± 0.15    
 

 Chrysene 0.20 2.91 ± 0.22    
 

252 Benzo [b] fluoranthene 0.30 2.38 ± 0.16 5-ring 4 - 
 

 Benzo [k] fluoranthene 0.20 3.03 ± 0.19    
 

 Benzo [a] pyrene 0.20 2.10 ± 0.21    
 

278 Dibenzo [a,h] anthracene 0.20 1.74 ± 0.24    
 

276 Benzo [g,h,i] perylene 0.20 2.44 ± 0.21 6-ring 1 - 
 

 Indeno [1,2,3-cd] pyrene 0.20 nd     
 

TOTAL   223.52  100 - 
 

 
Values represent mean ± standard deviation of triplicate samples; nd = not detected.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Performance of Bacillus (reaction A). 

 
 
 
limits (Table 3). The Pseudomonas was able to reduce 
pyrene and chrysene to 0.3 and 0.2% respectively; 

 
 
 
 
whereas the Bacillus reduced fluoranthene, pyrene and 
chrysene to 0.1, 0.01 and 0.4% respectively (Table 3). 



   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Performane of Pseudomonas (reaction B). 

 

 
Table 2. PAH diagnostic ratio analysis.  

 

PAHs ratio 
Drill cuttings PAHs source criteria** PAHs 

 

(This study) Petrogenic Pyrogenic molar mass 
 

 
 

ANT/(PHE + ANT) 0.31 ≤0.10 >0.10 178 
 

FLR/(PYR + FLR) 0.40 ≤0.50 >0.50 202 
 

 
**According to Hites and Gschwend (1982) cited in Okoro and Ikolo (2007)  
ANT= Anthracene 
PHE = Phenanthrene 
FLR= Fluoranthene  
PYR = Pyrene. 

 
 
 

However, treatment with the mixed culture resulted in 
the limited degradation of the 5-ring PAHs particularly in 
the fourth week (Figure 3). 

 

Discussion 
 
Sources of PAHs in the drill cuttings 

 
Yunker and McDonald (1995) described that the PAHs 
concentration and compositional distribution in a sample 
were often used to distinguish petrogenic (of petroleum) 
origin and pyrogenic (of combustion) origin of sources. 
They summarized criteria normally used in 4 strategies: 
 
i) Number of PAH alkyl homologous series present 
ii) PAH stability 
iii) Number of source-specific PAHs present and 
iv) Principal component analysis. 
 
With the use of number of source-specific PAHs present 
criterion, it was evident from Table 1 that the PAHs in the 
drill cuttings were pyrogenic in nature since acenaphthy- 

 
 
 
 
lene (70.7 mg/kg) and acenaphthene (61.9 mg/kg) were 
more in the drill cuttings. This might be due to the possi-
ble combustion of the hydrocarbons by the heat gene-
rated during drilling. Furthermore, according to Yunker 
and McDonald (1995), in assessing if the PAHs is source 
pyrogenic the best strategy is to consider ratios of a num-
ber of PAHs of different molar-mass. To this end, a modi-
fied PAH diagnostic ratio analysis approach (Okoro and 
Ikolo, 2007) based on double-indicator ratio, due to sou-
rce overlap, which was earlier used by Hites and Gsch-
wend (1982) on single-indicator ratio was also used. For 
an environmental sample and data thus obtained are pre-
sented in Table 2. The source of the PAHs in the drill cut-
tings was confirmed as pyrogenic since the ANT/ 
(PHE+ANT) ratio > 0.10 for fraction of molar-mass 178 
g/mol. Another possible anthropogenic source of the 
PAHs in the drill cuttings was petrogenic since the FLR/ 
(PYR+FLR) ratio < 0.50 for fraction of molar-mass 202 
mg/kg. This observation strongly indicated that oil-based 
mud (OBM) containing petroleum fraction - diesel invert - 
has been used during drilling. It may therefore, be infer-
red that the PAHs in the drill cuttings are pyrogenic and 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Performance of Bacillus + Pseudomonas (reaction C). 

 

 

petrogenic in nature. 

 

PAHs degradation in relation to molar mass and ring 
group 

 

The sudden disappearance of the 2-ring PAHs (Table 3) 
might be due to their physical properties. These proper-
ties include high volatility, slight solubility in water (31 
mg/l), high vapour pressure, 2 number of rings and low 
molar-mass (128 g/mol) (Latimer and Zheng, 2003). 
These might make them less likely absorbent by solid 
matter and unavailable to PAH-degrading organisms 
(Yunker and McDonald, 1995; Johnsen et al., 2005). The 
reduced rate of decrease in the concentration of the 3-
ring PAHs having molar mass ranging from 166 to 178 
g/mol particularly towards the end of the treatment period 
(Table 3) might be due to endogenous decay. The beha-
viour of the 3-ring PAHs was similar to the one observed 
by Oleszczuk and Baran (2003) in the case of soil pollu-
ted with the aircraft fuel. The 4-ring PAHs, fluoranthene 
and pyrene, having the molar mass 202 g/mol behaved 
almost in a similar fashion throughout the treatment. This 
might be because they are homologues. These charac-
teristics of 4-ring PAHs were also corroborated by Oles-
zczuk and Baran (2003). The 5-ring PAHs showed an 
almost similar tendency as exhibited by 4-ring PAHs. The 
similarities might be due to molecular composition as 
suggested by Oleszczuk and Baran (2003).  

The rate of degradation of the persistent PAHs showed 
distinct variations both in terms of their properties (molar 
mass and ring group) and in terms of the type of bacteria 
employed in the bioaugmentation (Table 4). The values of 
the degradation rate constant for individual PAHs va-ried 

between 1.9 x 10
-4

 day
-1

 in anthracene and 9.3 x 10
-2

 

day
-1

 in phenanthrene. From the Table 4, the average 

value of K1 for phenanthrene (3-ring) was 6.2 x 10
-2

 day
-1

 

 
 

 

and was observed to be close to the range of 5.6 x 10
-3

 

to 4.3 x 10
-2

 day
-1

 suggested by Shuttleworth and 
Cerniglia (1995) for phenanthrene in soils and sediments. 
For the higher ring PAHs, results of Table 4 showed that 

bezo [a] pyrene (5-ring), for instance, had an average K1 

value of 5.4 x 10
-3

 day
-1

, which was also close to the 

suggested range of 5.0 x 10
-4

 to 3.0 x 10
-3

 day
-1

 for B [a] 
P in soils and sediments. These results also highlight the 
view in the literature (Kanaly and Harayama, 2000) that 
PAHs with less than 4 rings are particularly susceptible to 
bio-degradation whereas, the biodegradation of PAHs 
with more than 4 rings is difficult but possible (Juhasz et 
al., 1997). 
 
 
Effect of the mixed strains on the biodegradation of 
PAHs 
 

According to Bouchez et al. (1995), bacterial isolates 
often degrade a narrow range of PAHs, but patterns of si-
multaneous degradation of PAH mixtures is complex 
(Johnsen et al., 2005). The phenomena of co-metabolism 
and inhibition might be responsible for the pattern of PAH 
degradation observed when the mixed culture was used 
(Figure 3). In the case of a mixture of 2 individually de-
gradable PAHs, Bouchez et al. (1995) observed prefe-
rential degradation of one or reduced degradation of both 
PAHs indicating the presence of metabolic competition. In 
a subsequent study, Bouchez et al. (1999) observed that 
the mixed culture of 2 or more strains, might possess the 
capacity to mineralize each of the PAHs effecting the 
limited degradation of a 5-ring PAH. This corroborated 
our observation on the cometabolism of 3- or 4-ring PAHs 
having no synergetic effect on 5-ring PAHs particularly in 
the fourth week of the experiment when inoculated with 
the mixed culture causing the limited degradation of 5-
ring PAHs. 



  
 
 

 
Table 3. Comparison of the biodegradation of the PAHs in the drill cuttings by the stated microbes.  
 
  

Ring 
   Treatment period     

 

PAHs fraction (mg/kg) 
 

2 weeks 
  

4 weeks 
  

6 weeks 
 

 

group 
      

 

  

A B C A B C A B C 
 

   
 

Naphthalene 2-ring nd nd nd nd nd   nd nd 
 

2-Methylnaphthalene  nd nd nd nd nd   nd nd 
 

Acenaphthylene 3-ring nd nd nd 2.26±0.11 nd nd nd nd nd 
 

Acenaphthene  nd nd nd 3.01±0.08 nd nd nd nd nd 
 

Fluorene  nd nd nd 2.10±0.11 nd nd nd nd 0.97± 0.05 
 

Phenanthrene  0.63±0.01 nd 0.30±0.02 5.00±0.20 0.34± 0.02 nd 0.41± 0.02 0.33±0.01 0.28± 0.02 
 

Anthracene  1.43±0.01 nd 0.52±0.02 4.55±0.13 nd nd nd nd 0.57± 0.02 
 

Fluoranthene 4-ring 3.06±0.19 nd 0.20±0.03 3.93±0.11 1.04± 0.16 2.17± 0.15 0.24± 0.02 nd 0.58± 0.02 
 

Pyrene  3.15±0.18 0.28± 0.03 1.04± 0.13 3.80±0.20 0.86± 0.05 1.52± 0.07 0.25± 0.01 0.71±0.02 0.48± 0.02 
 

Benzo [a] anthracene  2.81±0.11 0.31± 0.03 0.39± 0.01 0.80±0.10 0.42± 0.03 0.51± 0.03 nd nd 0.33± 0.01 
 

Chrysene  1.04±0.05 0.21± 0.02 0.60± 0.02 5.88±0.24 0.50± 0.10 0.50±002 1.19± 0.22 0.59±0.02 0.84± 0.05 
 

Benzo [b] fluoranthene 5-ring 0.54±0.03 nd 0.61± 0.01 1.37±0.06 1.04± 0.06 0.56± 0.02 nd nd nd 
 

Benzo [k] fluoranthene  0.48±0.01 nd 0.46±0.02 0.82±0.07 1.68±0.10 0.26± 0.02 nd nd nd 
 

Benzo [a] pyrene  0.28±0.02 0.28± 0.02 0.33±0.01 1.59±0.10 0.88± 0.02 1.01± 0.10 nd nd nd 
 

Dibenzo [a,h] anthracene  2.72±0.13 12.5±0.20 2.75± 0.02 9.23±0.16 22.3± 0.15 17.10±0.15 nd nd nd 
 

Benzo [g,h,i] perylene 6-ring 0.70±0.10 0.44± 0.02 nd 3.29±0.10 4.26± 0.27 3.17± 0.21 nd nd nd 
 

Indeno [1,2,3-cd] pyrene  2.87±0.09 0.94± 0.04 1.18± 0.13 3.34±0.07 3.53± 0.04 0.78± 0.03 nd nd nd 
 

Total PAHs remaining (mg/kg)   19.71 14.96 8.38 50.97 36.85 27.58 2.09 1.63 
 

 
Values represent mean ± standard deviation of three replicates; 
A = Bioaugmentation with Bacillus; 
B = Bioaugmentation with Pseudomonas;  
C = Bioaugmentation with Bacillus + Pseudomonas; 
nd = not detected; 
Control is not shown 

 

However, it was observed that acenaphthylene 
in the first2 weeks of the treatment with Bacillus 
was not within the laboratory detection limit, but 
in the fourth week increased to 2.26 mg/kg (Ta-
ble 3). Such phenomenon was also observed in 
fluorene, anthracene, fluoranthene, pyrene, 
benzo[a]anthracene, chrysene, benzo[k]fluoran-
thene, benzo[a]pyrene, dibenzo[a,h]anthrace-
ne, benzo[a,h,i]pyrene and indeno[1,2,3-cd]pyr-
ene. This might be because, according to seve-
ral literatures, complete biodegradation of toxic 

 

 

and recalcitrant organic compounds like PAHs 
to harmless end-products may not always oc-
cur, instead the biotransformation of some frac-
tions may have occurred and caused the con-
centrations of fractions previously less than the 
laboratory detection limits to rise above such 
limits. 

 

Statistical analyses 
 
Table 5 shows the results of the 2-factor ANO- 

 

 

VA performed on the results of the biodegrada-
tion of the observed across the treatments app-
lied and did not have significant effect on the 
biodegradation of the PAHs after 6 weeks of 
treatment. PAHs. The results show that the row 
and column sources of variability were signifi-
cant at the 0.05 probability level, which implies 
that there were significant differences in the bio-
degradation of the PAHs due to the treatments 
and remediation period. In order words, the 
treatments applied resulted in significant diffe 



 
 
 

 
Table 4. Comparison of the degradation rate constants of some PAHs.  

 

PAHs 
Molar mass  K1 (day

-1
)  

 

(g/mol) A B C Average 
 

 
 

Phenanthrene 178 3.7 x 10
-4

 9.3 x 10
-2

 9.3 x 10
-2

 6.2 x 10
-2

 
 

Anthracene 178 5.6 x 10
-3

 - 1.9 x 10
-4

 2.9 x 10
-3

 
 

Fluoranthene 202 1.3 x 10
-2

 - 1.7 x 10
-2

 1.5 x 10
-2

 
 

Pyrene 202 2.5 x 10
-2

 1.6 x 10
-2

 5.3 x 10
-2

 3.1 x 10
-2

 
 

Benzo [a] anthracene 228 3.0 x 10
-2

 1.9 x 10
-2

 5.5 x 10
-4

 1.7 x 10
-2

 
 

Chrysene 228 3.0 x 10
-3

 5.4 x 10
-3

 3.9 x 10
-3

 2.0 x 10
-2

 
 

Benzo [b] fluoranthene 252 9.2 x 10
-3

 2.0 x 10
-2

 1.1 x 10
-2

 1.3 x 10
-2

 
 

Benzo [k] fluoranthene 252 6.2 x 10
-3

 - 5.9 x 10
-3

 6.1 x 10
-3

 
 

Benzo [a] pyrene 252 5.1 x 10
-3

 5.1 x 10
-3

 6.1 x 10
-3

 5.4 x 10
-3

 
 

Dibenzo [a,h] anthracene 278 2.0 x 10
-2

 2.0 x 10
-2

 2.0 x 10
-2

 2.0 x 10
-2

 
 

Benzo [g,h,i] perylene 276 1.2 x 10
-2

 2.1 x 10
-2

 - 1.7 x 10
-2

 
 

 
A = Bioaugmentation with Bacillus; 
B = Bioaugmentation with Pseudomonas;  
C = Bioaugmentation with Bacillus + Pseudomonas 

 

 
Table 5. 2-factor ANOVA on the result of the biodegradation of PAHs.  

 
 Sources of Variability Variations df. Mean Squares F ratio 

 

 

Row VR = 2527.35 2 ) 
  

V 
    )   

 

 
2 

 
R 

  S R
2 ) 

= 2252.54  

    S  
   

= 1263.675 
 

SE
2  

    R   

df 
  

 

              

           ⇒ S  
 

               
 

 

Column VC= 8014.35 2 ) 
  

V 
   )   

 

 
2     SC

2 ) = 7142.91  

    S    C  = 4007.175  SE
2  

             
 

    C    df      
 

           ⇒ S  
 

               
 

 

Interaction VI= -1494.59 4 ) 
    

V 
   )   

 

 
2 

   
I 

  S I
2 ) 

= -666.04  

    S  
    

= -373.648 
 

S E
2  

    I   

df 
  

 

             
 

           ⇒ NS  

              
 

 Error VE = 10.10 18 ) 
2 
  VE 

  -   
 

    S  
  

= 0.561 
   

 

    E   

df 
    

 

             
 

              
 

 Total V = 9057.21 26 -          -   
   

NS = Not Significant at p<0.05  
S = Significant at p<0.05 
df. = Degree of Freedom 

 

 

ences in the biodegradation the PAHs of the drill cuttings 
over time. However, the interaction source of variability, 
according to the results, was not significant at the 0.05 
probability level suggesting that significant differences 
were not 

 

Conclusion 
 
i) The chemical characteristics of the drill cuttings are by 
far more than the safe limits fixed by Nigerian govern-
ment DPR. Therefore, the drill cuttings are unsafe to dis-
pose off without prior treatment.  
ii) The PAHs of the drill cuttings consists of 2 - 6 fused 
rings with molar-masses ranging from 128 – 278 g/mol. 

 
 

 

The total PAH concentration of the drill cuttings is 223.52 
mg/kg. The most abundant PAH fraction is acenaphthy-
lene (70.7 mg/kg, dry weight) while the predominant PAH 
ring-group in the drill cuttings is the 3-ring PAHs (repre-
senting 90% of the total PAHs) and consists of acenaph-
thylene, acenaphthene, fluorene, phenanthrene and an-
thracene.  
iii) Some PAHs are pyrogenic and others petrogenic. The 
pyrogenic PAHs are due to possible combustion of hydro-
carbons by the heat generated in the drill-bit during drill-
ling operations. The presence of petrogenic PAHs in the 
drill cuttings is a strong indication of the OBM containing 
the diesel-invert petroleum fraction, which might have 
been used during drilling. This completely contravenes 



 
 
 

 

the ban by Nigerian government DPR on the use of 
OBMs while drilling in its shore and near-shore lines.  
iv) The individual PAHs like 2-ringed one having the mo-
lar mass 128 g/mol were remediated faster. In the case of 
predominant 3-ring PAHs with molar-mass of 166 – 178 
g/mol, the amounts remained longer, 0.4 - 0.9% remain-
ed after 2 weeks of treatment, thereafter also continued 
to decrease, at a diminishing rate.  
v) Considering the degradability of individual PAHs by 
Bacillus subtilis and Pseudomonas aeruginosa isolates, 
the 3- and 4-ring PAHs are relatively better degraded by 
Pseudomonas. Both bacterial strains degraded the 5-and 
6-ring PAHs by equal proportions. Meanwhile, the use of 
the mixed culture of bacterial isolates led to the li-mited 
degradation of the 5-ring PAHs. 
 
 
Abbreviations: ANOVA; Analysis of Variance, APHA; American Pu-
blic-Health Association, ASTM; American Society for Testing and Mate-
rials, CFU; Colony Forming Unit, DPR; Department of Petroleum Re-
sources, IRS; Infrared Spectrophotometer, OBM; Oil-Based Mud, PAH; 
Polycyclic Aromatic Hydrocarbons, RENA; Remediation by Enhanced 
Natural Attenuation, THC; Total Hydrocarbon Content and USEPA; Uni-
ted States Environmental Protection Agency. 
 
Nomenclature: a, b, c; treatments, blocks and entries respectively C0, 

Ct ; PAH concentration at the initial and over a time period t (mg/kg) re-

spectively, K1; Pseudo-first order kinetic constant (day
-1

), j, k, l; row 
(treatment), column (block) and repetition (replication) respectively, t; 

time (days), VC, VE, VI, VR, V ; variation due to columns, error, inter-
action between rows and columns, rows and total variation of the data   

set respectively and X j , X k , X ; mean of the entries in the jth row, 

kth column and grand mean respectively. 

 

Recommendations 

 
i) Drill cuttings may be bio-treated, to bring down the con-
taminants level to acceptable level before its land 
disposal to reduce the environmental pollution.  
ii) The department of petroleum resources (DPR) in Nige-
ria may redouble effort to enforce the ban on the use of 
the OBM by crude-oil producing companies operating in 
the country.  
iii) Bioaugmentation may be adopted as a good treatment 
method for the drill cuttings contaminating 2- to 6-ring 
PAH.  
iv) The choice of bacterial consortium to be used in the 
bio-treatment of the oil-field drill cuttings may favour 
Pseudomonas and Bacillus. As far as possible, the pure 
strains instead of the mixed stains may be made.  
v) The findings may be adopted by the concerned com-
panies in treating the drill cuttings to reduce the, cost, 
energy and pollution associated with the thermal treat-
ment. 
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