

African Journal of Environmental and Waste Management ISSN 2375-1266 Vol. 12 (3), pp. 001-010, March, 2025. Available online at www.internationalscholarsjournals.org © International Scholars Journals

Author(s) retain the copyright of this article.

Review

## Emerging Insights from Fish Ecogenotoxicology: Applications in Environmental Monitoring and Risk Assessment

Akpoilih B. U.

Department of Animal Science and Fisheries, University of Port Harcourt, Nigeria E-mail: uzeziu2@yahoo.co.uk; Phone: +234(0)8134381645

#### Accepted 10 October, 2024

Ecogenotoxicology (genetic ecotoxicology) is an approach that applies the principles and techniques of genetic toxicology to assess the potential effects of environmental pollution in the form of genotoxic agents on the health of the ecosystem. Contrary to human toxicology studies which focus on the fate of the individual, ecogenotoxicology evaluates the consequences of genotoxicants for population sizes and structure, but applies the principles of genetic toxicology in hazard and risk assessment. Genetic hazard assessment, thus, deals with changes in genetic material of organisms, either human or other natural origin. Several reviews demonstrate the presence and potency of genotoxins from a broad range of industrial and municipal effluents. There is a close association of DNA damage, mutation, and induction of various types of cancer. Fish serves as useful genetic model for the evaluation of pollution in aquatic ecosystems. Fish species from contaminated areas initiated studies in the aquatic environment and evidence is growing that environmental mutagens can reduce the reproductive success of populations. Different genotoxicity tests and their applications to environmental monitoring and assessment have been variously reported in fish. This review paper, thus, examines the use of ecogenotoxicology in environmental monitoring, the role of fish in genotoxicity testing of pollutants, genetic basis in genotoxicological assessment, cur rent methods of ecogenotoxicological hazard assessment using fish in vitro and in vivo, and their applications to environmental monitoring as well as recent advances in the field of fish ecogenotoxicology. Limitations and recommendations for further research on the use of ecogenotoxicology was also highlighted.

Keywords: Ecogenotoxicology, Environmental monitoring, Risk assessment, DNA damage, Genotoxicity tests.

## INTRODUCTION

Pollution of the environment has become a major concern of society (Shugart and Theodorakis, 1998). One of the most sensitive concerns is the potential for exposure to substances that are genotoxic . A genotoxic chemical or physical agent has the ability to induce mutations or so called indicator effects which are mechanistically associated with the formation of mutations (for example, induction of DNA modifications, DNA repair, or recombination) (Belfiore, 1998).

Environmental contaminants can affect the genetic makeup of populations in three ways: via mutations, genetic drift, and genetic adaptation (Belfiore, 1998). Some of these pollutants are carcinogenic and mutagenic with the capacity to affect both the structural inte-grity of DNA and the fidelity of its biological expressions

(Wogan and Gorelick, 1985).

Genetic toxicology is an area of science in which the interaction of DNA-damaging agents with the cell's genetic material is studied in relation to subsequent effects on the health of the organism (Shugart and

Theodorakis, 1998). Ecogenotoxicology (genetic ecotoxicology) is an approach that applies the principles and techniques of genetic toxicology to assess the potential effects of environmental pollution in the form of genotoxic agents on the health of the ecosystem (Shugart and Theodorakis, 1998). Genetic hazard assessment, thus, deals with changes in genetic material of organisms, either human or other natural origin (OSPAR, 2002). Several review demonstrate the presence and potency of genotoxins from a broad range

Of industrial and municipal effluents (De Raat et al., 1990; White et al., 1996a; Claxton et al., 1998) as cited by OSPAR, 2002. There is a close association of DNA damage, mutation, and induction of various types of cancer (OSPAR, 2002). Fish serves as useful genetic model for the evaluation of pollution in aquatic ecosystems (Mitchell and Kennedy, 1992; Park et al., 1993). Fish species from contaminated areas initiated studies in the aguatic environment (Murchelano and Wolke, 1991; Mc Mahon, 1994; Moore and Myers, 1994) and evidence is growing that environmental mutagens can reduce the reproductive success of populations (Anderson and Wild, 1994). Different enotoxicity tests and their applications to environmental monitoring and assessment have been variously reported in fish (Hartmann et al., 1999; Gartiser et al., 2001; White et al., 1998a; White et al., 1998b; Helma et al., 1996; Vargas et al., 2001; Hose and Brown, 1998; Stahl, 1991; Mitchelmore and Chipman, 1998b; Grummt, 2000b). Some of the methods are based on OECD and EC guidelines used for chemical risk assessment (OSPAR, 2002).

### Genetic mechanism of changes in ecogenotoxicology

One of the crucial questions in the field of environmental genotoxicology is how the potential hazards and risk of genotoxic substances should be evaluated (Roex *et al.*, 2001). To answer this question a distinction has to be made between the different pathways along which a chemical is able to affect the genetic structure of an organism and the subsequent effects this may have for the populations in the field (Roex *et al.*, 2001).

It is difficult to demonstrate the effect of environmental stressors, including genotoxicants, at the ecosystem level, where population and communities are studied because the responses observed are latent and so far removed from the initial event(s) of exposure that causality is often almost impossible to establish (Shugart and Theodorakis, 1998). A way to solve this problem is to view ecosystem as dynamic interactions of living and inert matter where the living material acclimates and adapts to environmental changes. These processes are physiological and have genetic basis, therefore, understanding changes at the genetic level (DNA) should help define the more complex changes at the ecosystem level (Shugart and Theodorakis, 1998).

The genetic apparatus of an organism can interact with genotoxicants in a variety of ways and an understanding of the cellular mechanisms involved in these interactions provide the researcher the opportunity to predict and possibly prevent contaminant-induced genetic damage in exposed populations (Shugart and

Theodorakis, 1998). Genotoxicants can alter the structural integrity of the DNA, cause mutations and

subsequent heritable effects or even cause non-mutagenic effects. Conversely, the organism may perceive the genotoxicant and attempt to eliminate the agent or repair changes to the DNA (Guengerich, 1993). If the genotoxic agent directly attacks the DNA, the organism may perceive this damage and attempt repair (Shugart et al., 1992). The flow of genotoxic stress within a somatic cell (Brusick, 1980) and the mechanisms involved have been reviewed (Thilly and Call, 1986; Clive, 1987). Cellular processes regulating these events in the DNA are very complex and for which there are little understanding (Shugart and Theodorakis, 1998). These processes are affected differently in different species and may depend upon, for example, the type or class of genotoxic agent and the reactivity of its metabolites, capacity of the cell to recognize and suppress the multiplication of cells with aberrant properties (Clive, 1987). Effects expressed in somatic cells can be detrimental to the exposed individual, whereas, mutational events may affect subsequent generations (Shugart and Theodorakis. 1998). Extrapolation of effects on somatic cells to germ cell level of organization is difficult due to the inherent difference in sensitivity of these types of cells to genotoxicants (Wurgler and Kramers, 1992). Furthermore, establishing a causal relationship between a genotoxic agent in the environment and a deleterious effect in subsequent generations of that organism is also highly unlikely because individuals carrying harmful mutations are eliminated from the population due to a strong selection against less fit and less well-adapted individuals (Bickham and Smolen, 1994).

## Role of fish in Ecogenotoxicology

Genotoxins are chemicals which are responsible for DNA damage in variety of aquatic organisms and fishes in particular causing malignancies, reduced growth, abnormal development, reduced survival of embryos, larvae, and adults, ultimately affecting the economy of fish production significantly. Genotoxicity not only reduces the "fitness" in wild fish populations, but also pose risk to human health via food chain (Kapour and Nagpure, 2005).

Although, technical advancements have been made in some mammalian species and also in fruit flies, the desired progress has not been achieved towards evaluation of potential hazards and risks from genotoxic pollutants in fish species (Kapour and Nagpure, 2005).

The selection of fish as a model in ecogenotoxicological studies could be made necessary since fish is a very sensitive biomarker indicator of water quality and can highlight the potential danger of new chemicals introduced in the aquatic environment (Bailey *et al.*, 1992) and also respond to toxicants in a ma-nner similar to higher vertebrates (Al-Sabti and Metcalfe,

1995). Fish serves as useful genetic model for the evaluation of pollution in aquatic environment (Mitchell and Kennedy, 1992; Park et al., 1993). Current awareness of the potential hazards of pollutants in the aquatic environment has stimulated much interest in the use of fish as indicators for monitoring carcinogens, teratogens, clastogens, and mutagens (Obiakor et al., 2012). This is because aquatic environment serves as convenient repositories for man's biological and technological wastes (Cajaraville et al., 2000). Fish play different roles in the trophic web such as undergoing bioaccumulation of environmental pollutants and biotransformation of xenobiotics through cytochrome p450-dependent oxidative metabolism; besides they respond to mutagens at low concentrations (Goksoyr et al., 1991). Fish cells retain important traits of fish; for example, poikilothermic behaviour, unique xenobiotic metabolism, and low rate of repair mechanism; they have been shown to be more sensitive for the induction of genetic damage (Kapour and Nagpure, 2005). DNA repair has been shown to be slower in fishes than mammals (Walton et al., 1984; Espina and Wesis, 1995). Therefore, they can be used as sentinel organism for biomonitoring studies (Landolt and Kocan, 1983). Fish have severally been used in several eukaryotic

enotoxicity and mutagenicity tests, which include its use in Comet assay (Sumathi et al., 2001), DNA repair 1989; synthesis (Mullerschon, Grummt, 2000b), Chromosomal aberration test (Al-Sabti, 1985; Rishi and Grewal, 1995), Micronucleus assay (De Flora et al., 1993; Saotome and Hayashi, 2003; Pantaleao et al., 2006), and Sister chromatid exchange test (Kligerman et al., 1984; Sahoo et al., 1998). Therefore, efforts should be made to utilize assays for detecting enotoxicity caused by aquatic pollutants in fishes at DNA level. This will help in formulating long-term strategies for fish conservation programme besides estimating safe Level of pollutants in water (Kapour and Nagpure, 2005).

# Role of ecogenotoxicology in environmental monitoring

Contrary to human toxicology studies which focus on the fate of the individual, ecogenotoxicology evaluates the consequences of genotoxicants for population sizes and structure. Investigations showing high prevalence of hepatic tumors in different fish species from contaminated areas initiated studies in the aquatic environment (Murchelano and Wolke, 1991; McMahon, 1994; Moore and Myers, 1994). Several examples of neoplasms in fish due to waste water effluents have been described (Metcalfe and Sonstegard, 1985; Kimura *et al.*, 1989). Exposure to DNA-damaging agents may result in the formation of carcinogens, have been detected in mussels (Harvey *et al.*, 1997) and fish from

contaminated sites (Dunn, 1991; Weishburger and Williams, 1991; El Adlouni *et al.*, 1995; Erickson and Larsson, 2000). Thus, detection of adducts provide a way of documenting exposure. This approach was used to examine DNA from beluga whales in St Lawrence estuary, Quebec, Canada, to determine whether exposure to benzo (a) pyrene (BaP), a potent environmental carcinogen and the suspected etiological agent for the high incidence of cancer in these animals had occurred (Martineau *et al.*, 1988).

Early in 1987 (Shugart and Theodorakis, 1998), the detection of excessive strand breakage in the DNA of several aquatic species was implemented as a biomonitor for environmental genotoxicity as part of the Biological and Monitoring and Abatement Program for the US Department of Energy (USDOE) Reservation in Oak Ridge, Tennessee. This approach was effectively used in studies with two species of turtles, the snapping turtle (*Chelydra serpentine*) and Pond slider (*Trachemis scripta*) (Meyer-Schone *et al.*, 1993) using the Alkaline DNA unwinding assay (Shugart, 1998). Similarly, analysis of strand breaks in Sun fish (Shugart and Theodorakis, 1998), using the DNA alkaline unwinding assay (Shugart,

1998), has been employed as a biological marker for environmental genotoxicity as part of the Biological Monitoring and Abatement Program at East Fork Popler Creek (Shugart, 1990). This creek is the receiving stream for industrial effluent from the USDOE reservation in Oak Ridae. Tennessee. USA. Water and sediments downstream contain metal, organic chemicals and radionuclides discharged over many years of operations (Shugart, 1990). The ervthrocyte micronucleus test has been used with different fish species (Obiakor et al., 2012) and other marine shellfish to monitor aquatic pollutants displaying mutagenic features in developed countries (De Flora et al., 1993; Saotome and Hayashi, 2003; Pantaleao et al., 2006). Current awareness of the potential hazards of pollutants in the aquatic environment has stimulated much interest in the use of fish as indicators for monitoring carcinogens, teratogens, clastogens and mutagens (Obiakor et al., 2012). This is because aquatic environment serves as convenient repositories for man's biological and technological wastes (Cajaraville et al., 2000). Aquatic animals have often been used as assay to evaluate surface water (Brugs et al., 1977, Carins et al., 1975). Substances displaying mutagenic, teratogenic and carcinogenic potentials are easily evaluated because of high sensitivity of these organisms to these pollutants at low concentrations (Koeman et al., 1977, Poele and Strik, 1975). Obiakor et al. (2010a) and Obiakor et al. (2010c) have demonstrated the use of Synodontis clarias and Tilapia nilotica from freshwater of the Anambra River, Nigeria, in ecogenotoxicology studies using the micronucleus test and validating them as index of cytogenetic damage, monitoring of aquatic genotoxicants and other sublethal concentrations of chemical pollutants.

Ideally, genetic ecotoxicology will begin to address such outcomes of exposure to environmental genotoxicants as disease, decreased reproductive success, and altered genotypic diversity (Shugart and Theodorakis, 1998) using endpoints such as frequencies of gametes loss due to cell death, embryo mortality caused by lethal mutations, abnormal development, cancer, and mutation frequencies affecting the gene pool of exposed populations (Anderson and Wild, 1994). But, up till now only endpoints like gamete loss or teratogenic effects as well as cancer incidences can be measured (OSPAR, 2002). Effects for exposed populations might be estimated in case where these populations are ecologically characterized, but knowledge about consequences of genotoxic exposure on the gene pool of exposed species is still scarce (Theodorakis and Shugart, 1998; OSPAR, 2002), however, the principles underlying research of effects of genotoxicants on genetic diversity are not new as there are newer approaches to describe genetic effects of contaminants on the population level (Bicham and Smolen, 1994; Anderson et al., 1994; Roex et al., 2001), which focus on the genetic diversity, examining the current status and history of population by molecular genetic technique (Shugart and Theodorakis, 1998). But these effects are not necessarily caused by mutagenicity; they depend also on chronic effects and population size (Bickham et al., 2000).

In a heterozygous population, there are likely to be certain genotypes that are more sensitive to genotoxic exposure than others. This is so if the population is heterozygous at loci that are both critical to fitness and susceptible to toxicant-induced structural alterations (Shugart and Theodorakis, 1998). Genotoxic exposure can act as a selective force by eliminating sensitive genotypes, or reducing the number of offspring that they contribute to the next generation. The result can be a reduction in the total genetic variation within the population or a shift in genotypic frequencies (Shugart and Theodorakis, 1998).

## Role of ecogenotoxicology in environmental risk assessment

Genetic hazard assessment investigates changes in genetic material of organisms, either human or other natural origin (OSPAR, 2002). А review of ecogenotoxicology in environmental risk assessment has been presented by Roex et al. (2001). Regulatory authorities worldwide require data on the genotoxic potentials of new drugs and chemicals (Jena et al., 2001) through genotoxicity testing for hazard identification with respect to DNA damage (Madle et al., 1987) and biological information indicative of toxicity, which can be interpreted and/ or extended to the assessment of health risk to humans (Nath and Krishna, 1998) and the environment (Roex et al., 2001). Today, in the pharmaceutical industry, it is not possible to register a new drug without providing information on its mutagenicity (Cartwright and Mathews, 1994). In ecogenotoxicology, possible effects of mutagenic/ genotoxic substances on populations and ecosystems are investigated. Mutagenicity testing of genotoxic substances has been performed with all types of organisms (OSPAR, 2002).

In risk assessment of chemicals, a first screening for mutagenicity takes place in a battery of three in vitro (in situ) genotoxicity test, after which an in vitro carcinogenicity test is carried out based on a position result in the in vitro test (Kramer *et al.*, 1992), the result of which is extrapolated to carcinogenic risk for humans by calculating a lifetime exposure level corresponding to a unit risk of  $10^{-6}$ , which is accomplished by linear extrapolation from lowest effective dose to 0 (Roex *et al.*, 2001). Ecological risk assessment concerns a wider range of species instead of a single one like in human genotoxicology, and has to deal with the protection of populations instead of individuals (Mohn and De Raat, 1983; Wurgler and Kramers, 1992).

Test animals that are used in carcinogenicity studies for risk assessment are mostly mice, rats, or hamster for which extrapolation to human situations makes them suitable models (Roex *et al.*, 2001). However, for extrapolation to ecosystem, carcinogenicity test batteries with more representative species such as fish, daphnia, and algae used in ecological risk assessment procedures are appropriate as these models, particularly fish, have been used severally in ecological risk assessment studies (Amanuma *et al.*, 2000; Burhart, 2000) demonstrating the ecogenotoxicological significance of these models.

# Applications of ecogenotoxicological methods in monitoring and risk assessment

For monitoring purpose, higher organisms (eukaryotes) are exposed to environmental compartment "in situ" or in laboratory test "in vivo" (OSPAR 2002). Some of the methods applied to environmental samples are based on corresponding OECD and EC guidelines used for chemical risk assessment, but others have not yet been standardized (OSPAR, 2002). The bacterial Ames test (Ames et al., 1973), Umu-C assay (Oda et al., 1985), and SOS chromo assay (Quillardet et al., 1982; 1985) have been applied predominantly to waste water samples. Tests with eukaryotes cells or organisms are relevant for ecological risk assessment-plants, amphibians, fish, permanent cell lines such as Chinese hamster lung cells (V79) (Gartiser and Brinker, 1996; Gartiser et al., 1996; Jager et al., 1996a; Miltenburger, 1997), Chinese hamster ovary cells (CHO) (Strniste et al., 1982; Waters et al., 1989; Venegas and Garcia, 1994), and Chinese hamster lung cells (CHL) (Nobukawa and Sanukida, 2000), marine and freshwater mussels-have been used

as test organisms (OSPAR, 2002). An overview of some genotoxicity test methods and their application to monitoring and assessment is given below.

## Comet assay

The comet assay has been developed from the method of Rydbert and Johansen (1978), who were the first to perform a quantitation of DNA damage in single cells. Later on, Ostling and Johanson (1984) improved the assay by developing an

electrophoretic microgel technique under neutral conditions and stained the DNA with acridine orange. The more versatile alkaline method of the comet assay was developed by Singh et al. (1988), which was developed to measure low levels of strand breaks with high sensitivity. In general, cells are mixed with low-melting agarose placed on microscope slides and lysed by an alkaline buffer with ionic detergents. The liberated DNA is resolved in an electrophoresis chamber, stained and evaluated by florescence microscopy. Cells with increased DNA damage display increased migration from the nuclear region towards the anode (Singh et al., 1988). The resulting comet like structure is quantified by measuring the length of the tail and/ or tail moment (the intensity of the migrated DNA multiplied by the respective tail length with respect to the DNA). A review of the eaplicability of the comet assay in

environmental monitoring has been provided by Mitchelmore and Chipman (1998b) and has been applied to a broad range of aquatic organisms, including fish (Pandrangi *et al.*, 1995; Devaux *et al.*, 1997; Belpaeme *et al.*, 1998; Risso-de Faverney *et al.*, 2001).

### DNA Alkaline unwinding assay

The level of DNA strand breaks with respect to the total DNA can be determined by following a time-dependent alkaline unwinding assay. Unwinding of DNA takes place at single stranded breaks, hence the amount of double stranded DNA remaining after a given period of alkaline exposure will be inversely proportional to the number of strand breaks; this ratio is expressed in form of F values, which measures the relative double strandedness of a particular DNA (Shugart, 1998). In situ investigations for for the detection of genotoxic potential in selected surface water with the DNA alkaline unwinding assay have been reported using fish cells, early life stages of fish, crustaceae, and mussels (Meyers-Schone et al., 1993; Wittekindt et al., 2000). Everaarts and Sarkar (1996) studied DNA damage in sea stars (Asterias rubens) in order to assess the state of pollution of the North Sea.

### DNA repair synthesis (UDS-assay)

The unscheduled DNA synthesis assays measures the incorporation of radioactively labelled nucleosides (usually tritium-labelled thymidine) in cells that are not undergoing scheduled DNA synthesis. The DNA repair synthesis UDS test has been applied using primary hepatocytes from fish to assess genotoxicity in surface water (Mullerschon, 1989; Grummt, 2000b).

### Chromosome aberration test

Chromosome mutation is a macrodamage of chromosome (OSPAR, 2002). Chromosome aberration includes structural aberrations such as fragments, intercalations, and numeral aberrations resulting from either direct DNA breakage or inhibition of DNA synthesis (Nagpure et al., 2005). Cytogenic effects can be studied either in whole animals (in vivo) or in cells grown in culture (in vitro) (Nagpure et al., 2005). Generally, the cell culture is exposed to the test substance and then afterwards treated with a metaphase-arresting Colcimide (OSPAR, 2002) or Colchicine (Nagpure et al., 2005). Following suitable staining the metaphase cells are analysed microscopically for the presence of aberration. Although, cytogenic studies were initiated by Retzius (1890) on agnathan (Myxine gluttinosa), fish cytogenetics got real momentum with the work of Mekino (1934) as cited by (Nagpure et al., 2005). Since then, the test has been carried or evaluated in several fish species (Rishi and Grewal, 1995; Al-Sabti, 1985; Arockia and Selvanayagan, 1998; Anitha et al., 2000).

### Micronucleus assay

The micronuclei are chromosome fragments or whole chromosomes that were not incorporated in the daughter cell nuclei and appear in the cytoplasm (Schmid, 1975). The micronucleus test is a simple and sensitive assay for "in vivo" evaluation of genotoxic properties of various agents. Chromosomes in fish cells are usually of small size and occur in large numbers; therefore, it can be easily applied to fish or other aquatic organisms sine small and large number of chromosome do not affect the micronucleus assay (Al-Sabti and Metcalfe, 1995).

Environmental biomonitoring with micronucleus assays usually has been performed "in vivo" by exposure of relevant aquatic organisms for several days followed by microscopic analysis of erythrocytes, gill cells. But permanent fish cell lines (RTG-2) have also been used "in vitro" (Chung *et al.*, 1997; Kohlpoth *et al.*, 1999). "In vivo" studies with fish have severally been used and reported for genotoxicity with the micronucleus (Odeigah and Osaneyinpeju, 1995; Tuviene *et al.*, 1999; Obiakor *et al.*, 2012).

### Sister chromatid exchange (SCE) test

The sister chromatid exchange test detects reciprocal exchanges of DNA segments between two sister chromatids of a duplicating chromosome (Kumar *et al.*, 2005). Although little is known about the molecular basis, the SCE frequency is elevated under the influence of mutagenic agents and therefore serves as a model for genotoxicity (OSPAR, 2002; Ravindra *et al.*, 2005). For genotoxicity assessment in environmental samples SCE assays have been performed with mussels (Jha *et al.*, 2000a; 2000b), fish cells (Kligerman *et al.*, 1984; Zakour *et al.*, 1984; Sahoo *et al.*, 1998).

## Recent developments

In the field of genotoxicological evaluation of environmental samples, recent advancement has been achieved (OSPAR, 2002). Amanuma established a transgenic zebrafish for the detection of mutagens; it carries plasmids that contain the rpSL gene of Escherichia coli as a mutational target gene (Amanuma et al., 2000). Winn et al. (2000) prepared a transgenic fish that carries multiple copies of a bacteriophage lambda vector that harbours the cll gene as a mutational target, a technique originally developed for lambda transgenic rodents. The p53 tumor suppressor gene, which is known to be implicated in cancer development, has been investigated as a possible biomarker for genotoxin in fish cells (McMahon, 1994; Bhaskaran et al., 1999; 2000). The amplification of DNA by polymerase chain reaction technique enabled the detection of mutations at specific sites and the development of electrochemical DNA based biosensors (Kennerley and Parry, 1994; Mascini et al., 2001).

## Limitations in ecogenotoxicology

Increased mutations rates due to environmental pollution might negatively affect populations (OSPAR, 2002). This is still controversially debated in the scientific community (Wurgler and Kramer, 1992; Anderson and Wild, 1994) but evidence is growing that environmental mutagens can reduce reproductive success of populations (OSPAR, 2002). Even though an increasing number of studies involving ecogenotoxicity are available (Hose and Brown, 1998; Hutchenson et al., 1998; Theodorakis et al., 1998; Rodgers and Baker, 2000), the identification of clear cause-effect relations is increasingly complicated, the higher the level of biological organization. For instance, For example, Shugart and Theodorakis (1994, 1996) examined a series of retention ponds heavily contaminated with radionuclides, but which support a resident population of mosquitofish (Gambusia affinis) for the past 20 years. They reported that there was an

inverse correlation between DNA strand breakage and fecundity of fish from the contaminated ponds (Shugart and Theodorakis, 1998). This has implications for higherorder ecological effects, as well as for contaminantinduced selection of resistant phenotypes. Current investigations have provided evidence that genetic diversity is increased in the population of fish occupying the radionuclide-contaminated sites relative to reference sites (Shugart and Theodorakis, 1998). These findings are supported both by allozyme analysis - through determination of average heterozygosity and percent polymorphisms, and by the RAPD (randomly amplified polymorphic DNA) technique - by determining average similarities of banding patterns between individuals within populations. In addition it has been found that certain banding patterns are more prevalent in the contaminated sites than in the reference sites. Individuals which display these banding patterns at one of the contaminated sites have a higher fecundity and lower degree of strand breakage than do individuals with the less common banding patterns. This type of pattern is also observed with allozyme analysis - heterozygotes, especially at the nucleoside phosphorylase locus, are more common in the contaminated sites. Within the contaminated sites, heterozygotes have a higher fecundity and lower degree of strand breakage than do homozygotes. Long term laboratory exposures where environmental variables can be more rigidly controlled are underway in an effort to establish relationships between genotype, DNA strand breakage, and fecundity.

Ideally, genetic ecotoxicology will begin to address such outcomes of exposure to environmental genotoxicants as disease, decreased reproductive success, and altered genotypic diversity (Shugart and Theodorakis, 1998) using endpoints such as frequencies of gametes loss due to cell death, embryo mortality caused by lethal mutations, abnormal development, cancer, and mutation frequencies affecting the gene pool of exposed populations (Anderson and Wild, 1994). But, up till now only endpoints like gamete loss or teratogenic effects as well as cancer incidences can be measured (OSPAR, 2002). Effects for exposed populations might be estimated in case where these populations are ecologically characterized, but knowledge about consequences of genotoxic exposure on the gene pool of exposed species is still scarce (Theodorakis and Shugart, 1998; OSPAR, 2002).

Majority of the currently used genotoxicity testing assays for regulatory toxicity testing were developed in the 1970's (Jena *et al.*, 2001). In most of the cases, the site and mechanism by which genotoxicity is produced by the compound under the study is not known (Jena *et al.*, 2001). It may happen that the target site of toxic action may not be the same target site of toxic action of a new chemical entity (NCE) (Jena *et al.*, 2001). Also, In subchronic and chronic toxicity testing, several pertinent parameters or endpoints can be detected to determine the toxicity, but the same is rarely true for genotoxicity tests (Nath and Krishna, 1998). Moreover, for certain categories of chemicals (Jena et al., 2001), which need critical experimental evaluation, there are no details with regards to the choice of specific test system and test protocols (Muller et al., 1991). Most guidelines are devoid of recommendations for compounds, which are genotoxic, but seem to act by non-DNA target (Tennant et al., 1987). There are also no specific recommendations on the threshold of different genotoxic and tumorogenic compounds and their organ-specific effects when they are intended to use therapeutically (Scott et al., 1991). A single test system cannot be designed for universal detection of the relevant genotoxic substances; testing requirements depend on the nature and category of chemical substances (Jena et al., 2001). In addition, there is no validated test system for detecting induced genome mutation (aneuploidy) in germ cells (Allen et al., 1986).

### CONCLUSION

It is now clear that environmental genotoxicology holds the key to early detection and monitoring of pollution in aquatic environments, particularly when fish species are the test organisms. Fish serves as useful genetic model for the evaluation of pollution in aquatic ecosystems (Mitchell and Kennedy, 1992; Park et al., 1993). Fish species from contaminated areas initiated studies in the aquatic environment (Murchelano and Wolke, 1991; Mc Mahon, 1994; Moore and Myers, 1994) and evidence is growing that environmental mutagens can reduce the reproductive success of populations (Anderson and Wild, 1998). Different genotoxicity tests and their applications to environmental monitoring and assessment have been variously reported in fish (Hartmann et al., 1999; Gartiser, 2000; Gartiser et al., 2001; White et al., 1998a; White et al., 1998b; Helma et al., 1996; Vargas et al., 2001; Hose et al., 1998; Stahl, 1991; Mitchelmore and Chipman, 1998b; Mulleschon 1989; Grummt, 2000b). Fish cells retain important traits of fish; for example, poikilothermic behaviour, unique xenobiotic metabolism, and low rate of repair mechanism (Kapour and Nagpure, 2005). DNA repair has been shown to be slower in fishes than mammals (Walton et al., 1984; Espina and Wesis, 1995). Therefore, they can be used as sentinel organism for biomonitoring studies (Landolt and Kocan, 1983). Fish have severally been used in several eukaryotic genotoxicity and mutagenicity tests, which include its use in Comet assay (Sumathi et al., 2001), DNA repair (Mullerschon, 1989; Grummt. 2000b). synthesis Chromosomal aberration test (Al-Sabti, 1985; Rishi and Grewal, 1995), Micronucleus assay (De Flora et al., 1993; Saotome and Hayashi, 2003; Pantaleao et al., 2006), and Sister chromatid exchange test (Kligerman et al., 1984; Sahoo et al., 1998). Therefore, efforts should

be made to utilize assays for detecting genotoxicity caused by aquatic pollutants in fishes at DNA level. This will help in formulating long-term strategies for fish conservation programme besides estimating safe Level of pollutants in water (Kapour and Nagpure, 2005). Recent advancement has been made in the field of ecogenotoxicology (Amanuma *et al.*, 2000; Winn *et al.* 2000; McMahon, 1994; Bhaskaran *et al.*, 1999; 2000),

which use has also been recommended for in genotoxicity testing of new chemical entity (NCE) and pharmaceuticals by the International Conference on Harmonization (ICH) (Jena *et al.*, 2001). However, several drawbacks have hindered the effective use of genotoxicity tests in ecogenotoxicology (Wurgler and Ramer, 1992; Anderson and Wild, 1994; Jena *et al.*,

2001; OSPAR, 2002). Global efforts should be intensified and harmonized to solve some of these problems such as validating test systems to detect aneuploidy by anticentromere antibody (Nath *et al.*, 1995), identification of apoptosis (Abend *et al.*, 2000), use of fluorescent in situ hybridization (FISH) to visualize translocation of chromosomes (Marzin, 1999; Shimizu *et al.*, 2000), unscheduled DNA synthesis (UDS) (Butterworth *et al.*, 1987), and cell transformation assay (Martelli *et al.*, 2000) in fish. All the foregoing genotoxic screening methods, except apoptosis and unscheduled DNA synthesis (UDS), which have been used in fish

(Grummt, 2000b; Singha, 2005), have only been reported in man. Appropriate screening tests should also be validated for investigating consequences of genotoxins, not only on populations, but also on gene pool. TheseS tests will increase both the sensitivity and specificity of existing test protocols (Jena *et al.*, 2001).

#### REFERENCES

- Abend M, Kehe K, Riedel M, Beuningen DV (2000). Correlation of micronucleus and apoptosis assays with reproductive cell death can be improved by considering other modes of death. *Int. J. Rad. Biol.* 76: 249-259.
- Allen JW, Liang JC, Carrano AV, Preston RJ (1986). Review of literature on chemical induced aneuploidy in mammalian germ cells. Mut. Res. 167: 123-137.
- Al-Sabti K, Metcalfe CD (1995). Fish micronuclei for assessing genotoxicity in water. Mutat. Res., 343: 121-135.
- Al-Sabti K (1985) Frequency of chromosomal aberrations in the rainbow trout (Salmo gairdini Rich) exposed to live pollutants. J. Fish. Biol. 26: 13-19
- Amanuma K, Takeda H, Amanuma H, Aoki Y (2000). Transgenic zebra fish for detecting mutations caused by compounds in aquatic environments. Natl. Biotechnol. 18: 62-65
- Anderson SL, Sadinski WJ, Shugart LBP, Depledge MH, Ford T, Hose JE, Stegeman J, Suk W, Wirgin I, Wogan G (1994). Genetic and molecular ecogenotoxicology: a research framework. Environ. Health Perspec. 102: 9-12.
- Anderson SL, Wild GC (1994). Linking genotoxic responses to reproductive success in ecogenotoxicology. Environ. Health Perspec. 102: 9-12.
- Anitha B, Chandra N, Gopinath, P, Durairaj N (2000) Genotoxicity evaluation of heat shock in Gold fish (*Carassius auratus*). Mutat. Res. Genet. Toxicol. Environ. Mutag. 469: (1): 1-8.
- Arockia, R, Selvanayagam M (1998). Genotoxic effects of fenvalerate on

the chromosomes of fish *Oreochromis mossambicus* (peters) . Poll.Res. 17 (2): 119-122.

- Belfiore NM, Anderson SL (1998). Genetic patterns as a tool for monitoring and assessment of environmental aspects: the example of genetic toxicology. Environmental monitoring and assessment.51: 465-479.
- Belpaeme K, Cooreman Kirsch-Volders (1998). Development and validation of the in viro alkaline comet assay for detecting genome damage in marine flatfish. Mutat. Res. 415: 167-184.
- Bhaskaran A, May D, Rand-Weaver M, Tyler CR (1999) Fish: 53 as a possible biomarker for genotoxins in the aquatic environment. Environ. Mol. Mutagen. 33: 177-184
- Bhaskaran A, May D, Rand-Weaver M, Tyler CR (2000). Molecular characterization of the first non-mammalian: 73 cDNA. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 126: 49-57
- Bickham JW, Sandhu S, Herbert PDN, Chikhi L, Athwal R (2000). Effects of chemical contaminants on genetic diversity in populations: implications for biomonitoring and ecotoxicology.Mutat. Res. 463: 33-51.
- Bickham JW, Smolen MJ (1994). Somatic and heritable effects of environmental toxins and the emergence of evolutionary toxicology. . Environ. Health. Perspec. 102: 25-28
- Brugs WA, Cormick JHM, Neiheisel TW, Spear RL, Stephan CE, Stokes G (1977). Effect of Pollution on Fresh Water Fish. J. Water Pollut. Contr. Fed. 49: 1425-1493.
- Brusick D (1980) Principles of genetic toxicology. New York: Plenum Press.
- Burhart JG (2000) Fishing for mutations. Nature Biotechnol.18: 21-22 Butterworth B, Ashby J, Bermudez E, Casciano D, Mirsalis J, Probst G
- (1987) A protocol and guide for the in vivo rat hepatocyte DNA repair assays. Mutat. Res. 189: 123-133.
- Cajaraville MP, Bebianno MJ, Blasco JP, Saraquete C, Viarengo A (2000). The Use of Biomarkers to Assess the Impact of Pollution in Coastal Environments of the Iberian Peninsula: A Practical Approach. Sci. Total Environ. 247: 295-311.
- Carins J, Dickson KL, Westlake GF (1975). Biological Monitoring of Water and Effluent Quality. ASTM Publ., 607, Philadelphia.
- Cartwright AC, Mathews BR (1994). International pharmaceutical product registration: Aspects of quality, safety and efficacy. New York: Ellis Horwood Limited.
- Chung Y-S, Ichikawa K, Utsumi H (1997). Application of micronucleus in vitro assay to micropollutants in river water. Water Sci. Technol. 35: 9-13.
- Claxton LD, Houk VS, Hughes TJ (1998). Genotoxicity of industrial wastes and effluents. Mutat. Res. 410: 237-24
- Clive D (1987). Genetic Toxicology: from theory to practice. Clin. Res. Drug Development. 1: 11-41
- De Flora S, Vigario LD, 'Agostini F, Camoirano A, Bagnasco M, Bennecelli C, Melodia F, Arillo, A (1993). Multiple Biomarkers in Fish Exposed In situ to Polluted River Water. Mutat Res., 319: 167-177.
- De Raat, WK, Vink GJ, Hanstveit AO (1990). The significance of mutagenicity as a criterion in ecogenotoxicological evaluations. Pages 249-269.In: Waters, M.D, Daniels, F.B, Lewtas, J, Moore, M.M, Nesnow, S (eds). Genetic toxicology of complex mixtures. Plenum Press, New York.
- Devaux A, Pesonen M, Monod G (1997). Alkaline comet assay in rainbow trout hepatocytes. *Toxicology in vitro*. 11: 71-79.
- Dunn BP (1991). Carcinogen adducts as an indicator for the public health risks of consuming carcinogen-exposed fish and shell fish. Environ. Health. Perspec. 90: 111-116
- El Adlouni C, Tremblay J, Walsh P, Lagueux J, Bureau J, Laliberte D, Keith G, Nadeau, D, Poirier (1995). Comparative study of DNA adducts levels in white sucker fish (*Catostomus commersoni*) from the basin of the St. Lawrence River (Canada). Mol. Cell.Biochem. 148: 133-138.
- Erickson G, Larsson A (2000). DNA adducts in perch (Perca fluviatilis) living in coastal water polluted with bleached pulp mill effluents. Ecotoxicol. Environ. Saf. 46: 167-173
- Espina NG, Wesis P (1995). DNA repair in fish from polluted estuaries . Mar. Environ. Res. 39 (1-4): 309-312.

Everaarts JM, Sarkar A (1996). DNA damage as a biomarker of marine

pollution: strand breaks in seastars (*Asterias rubens*) from the North Sea. Water Sci Technol. 34: 157-162

- Gartiser S, Brinker L (1996). Abwasserbelastende Stoffe and Abwassersituation in Kliniken. F-E Nr 102 06 514, Bundesministerium fur Umwelt, Naturschutz und Reaktorsicherheit und Umweltbundesamt, Berlin (German).
- Gartiser S, Stiene G, Hartmann A, Zipperle J (2001). Einsatz von Desinfektionsmitteln im Krankenhausbereich Ursache fur okotoxische and gentoxische Effekte im Krankakenhausabwasser? (German) Vom Wasser.96: 71-88
- Goksoyr A, Anderson T, Buhler, DR, Stegeman JJ, Williams DB, Forlin R (1991). Immuno-chemical cross reactivity of ß-naphthoflavon inducible cytochrome P450 (P450 IAI) in lives microsomes from different fish species and rat. *Fish. Physiol. Chem.* 9: 1-13.
- Grummt T (2000b). DNA repair synthesis (Unscheduled DNA Synthesis) as a parameter for the assessment of genotoxicity in surface waters combined with biologic and cell biologic methods. In: Grummt, T (ed). 217Pp.
- Guengerich FP (1993). Cytochrome P450 enzymes. Am. Sci. 81: 440-447
- Hartman, A, Golet, EM, Gartiser S, Alder AC, Koller T, Widmer RM (1999). Primary DNA damage but not mutagenicity correlates with ciprofloxacin concentrations in German hospital waste waters. Arch. Environ. Contam. Toxicol. 36: 115-119.
- Harvey JS, Lyons, BP, Waldock M, Parry JM (1997). The application of the 32P-post labeling assay to aquatic monitoring. Mutat. Res. 378: 77-88.
- Helma C, Mersch-Sundermann V, Houk S, Glasbrenner U, Klein C, Wenquing K, Schulte-Hermann F, Knasmuller S (1996). Comparative evaluations of four bacterial assays for the detection of genotoxic effects in the dissolved water phases of aqueous matrices. Environ. Sci. Technol. 30: 897-907.
- Hose JE, Brown ED (1998). Field applications of the piscine anaphase aberration test: lessons from the Exxon Valdez oil spill. Mutat. Res. 399: 167-178.
- Hutchenson TH, Jha AN, Mackay, JM, Elliot BM, Dixon, D.R (1998) Assessment of development effects, cytotoxicity, and genotoxicity of marine polychaete (Platynereis dumerilii)exposed to disinfected municipal sewage effluent. Mutat. Res. 399: 97-108
- Jager I, Gartiser S, Willmund R (1996a). Anwendung von biologischen Testverfahren an Abwassern der Textilindustrie (German). Acta hydrochim. Hydrobiol. 24: 22-30.
- Jena GB, Kaul CL Ramarao P (2001). Genotoxicity testing, a requirement for drug discovery and development: impact of ICH guidelines. *Indian* .J.Pharmacol. 34: 86-99
- Jha AN, Hagger JA, Hills SJ (2000b). Tributyltin induces cytogenic damage in the early life sateges of the marine mussels (Mytilus edulis). Environ. Mol. Mutagen. 35: 343-350.
- Jha HN, Cheung VV, Foulkes ME, Hills SJ, Depledge MH (2000a). Detection of genotoxins in the marine environment: adoption and evaluation of an integrated approach using the embroyo larval stages of the marine mussels (Mytilus edulis). Mutat. Res. 464: 213-228.
- Kapour D, Nagpure NS (2005). Training on genotoxic assays in fishes. Kapour, D and Nagpure, N.S (eds). National Bureau of Fish Genetic Resources.Dilknsha, Telibagh, India: 68
- Kennerley GA, Parry JM (1994). Analyses of benzo[a]pyrene induced mutations by the use of Restriction-Site Mutation assays in aquatic species. *Mutat. Res.* 307: 223-228
- Kimura I, Kinae N, Kumai H, Yamashita M, Nakamura G, Ando M, Ishida H, Tomita I (1989). Environment: perculiar pigment cell neoplasm in fish. J. Invest. Dermatol. 92: 248S-254S.
- Kligerman AD, Bishop WE, Valentine LC (1984). Use of the mud minnow (Umbra sp.) in an *in vitro* sister chromatid test. Natl. Cancer Inst. Monogr. 65: 111-118.
- Koeman JH, Poel CL, Slooff W (1977). Continuous Biomonitoring Systems for Detection of Toxic Levels of Water. In: Hutzinger O (Eds.), Aquatic Pollutants, Pergamon, Oxford: 339-348.
- Kohlpoth M, Rusche B, Nusse M (1999). Flow cytometric measurement of micronuclei induced in a permanent fish cell line as a possible screening test for the genotoxicity of industrial waste waters. *Mutagenesis*.14: 397-402.

- Kramer PGN, Knaap AGAC, ver der Heijden CA, Taalman RDFM, Mohn GR (1992). Role of genotoxicity assays in the regulations of chemicals in the Netherlands: considerations and experiences. *Mutagenesis.* 6: 487-493.
- Kumar R, Pandey S, Sharma S (2005). Study of sister chromatid exchanges for assessment of genotoxicity. In: Kapour, D and Nagpour, N.S (eds), Training on genotoxic assays in fishes. National Bureau of Genetic Resources.Dilkusha, Telibagh, India:68.
- Maccubin AE (1994). DNA adducts analysis in fish, laboratory and fish studies. In: Malins, D.C, Ostrandu, G.K (eds). Aquatic toxicology: molecular, biochemical and cellular perspectives, Lewis Publishers, Boca Raton, Fl., 267-294.
- Madle S, Korte A, Ball R (1987). Experience with mutagenicity testing of new drugs: viewpoint of a regulatory agency. *Mutat. Res*, 182: 187-192.
- Martelli A, Campart GB, Carrozzino R, Ghia M, Mattioli F, Mereto E (2000). Evaluation of flutamide genotoxicity in rats and primary human hepatocytes. Pharmacol. Toxicol. 86: 129-134
- Martineau D, Lagace A, Beland P, Higgins R, Armstrong D, Shugart LR (1988). Pathology of stranded beluga whales (Delphinapterus leucas) from the St. Lawrence Estuary, Quebec, Canada. *J. Comp. Path.* 98: 287-311.
- Marzin D (1999). New approaches to estimating the mutagenic potential of chemicals. Cell Biol. Toxicol. 15: 359-365.
- Mascini M, Palchetti I, Marrazza G (2001). DNA electrochemical biosensors. Fresenius J. Anal. Chem. 369: 15-22.
- Mc Mahon G (1994). The genetics of human cancer: implications for ecogenotoxicology. Environ. Health Perspec. 102 (12): 75-80
- Metcalfe CD, Sonstegard RA (1985). Oil refinery effluents: evidence of cocarcinogenity activity in the trout embryo microinjection assay. J. Natl Cancer Inst. 75: 1091-1097
- Meyer-Schone L, Shugart LR, Beauchamp JJ, Walton BT (1993). Comparison of two freshwater turtle species as monitors of radionuclide and chemical contamination: DNA damage and residue analysis. Environ. Tox. Chem. 12: 1487-1496.
- Miltenburger HG (1997). Quantitative Beurteilung von Mutagenitat in Abwasserstromen der chemischen Industrie. Final report VCI/Verband der chemischen Industrie, Roßdort (German).
- Mitchell S, Kennedy S (1992). Tissue Concentrations of Organochlorine Compounds in Common Seals from the Coast of Northern Ireland. Sci. Total Environ. 115: 235-240.
- Mitchelmore CL, Chipman JK (1998b). DNA strand breakage in aquatic organisms and the potential value of the comet assay in environmental monitoring. Mutat. Res. 399: 135-147.
- Mohn GR, de Raat WK (1983). Environmental significance of mutagens. Sci. Total Environ. 2: 1771-1778
- Moore MJ, Myers MS (1994). Pathobiology of chemical-associated neoplasia in fish. Pages 327-386. In: Malins, D.C and Ostrader, G.K (eds). Aquatic Toxicology. Molecular, Biochemical and Cellular Perspectives. Lewis Publishers, Boca Raton, Ann Arbor, London, Tokyo.
- Muller L, Kasper P, Madle S (1991). The quality of genotoxicity testing of drugs. Experiences of a regulatory agency with new and old compounds. *Mutagenesis*. 6: 143-149.
- Murchelano RA, Wolke RE (1991). Meoplasms and nonneoplastic liver lesions in river Flounder (Pseudopleuronectes americanus) from Boston Harbor, Massachusetts. Environ. Health Perspec. 90: 17-26.
- Nagpure NS, Pandey S, Sharma S (2005). Single cell gel electrophoresis (SCGE) or comet assay. In: Kapour, D and Nagpour, N.S (eds), Training on genotoxic assays in fishes. National Bureau of Genetic Resources.Dilkusha, Telibagh, India.68 Pp.
- Nath J, Krishna G (1998). Safety screening of drugs in cancer therapy. Acta Haematol. 99: 138-147
- Nath J, Tucker JD, Hando JC (1995). Chromosome aneuploidy micronuclei, kinetochores and aging in man. Chromosome. 103: 725-731.
- Nobukawa T, Sanukida S (2000). The genotoxicity of by-products by chlorination and ozonation of the river water in the prsesnce of bromide ions. Water Sci. Techonol.. 42:259-264.
- Obiakor MO, Ezeonyejiaku CD, Ezenwelu, CO, Ugochukwu GC (2010c). Aquatic Genetic Biomarkers of Exposure and Effect in

Catfish (Clarias gariepinus, Burchell, 1822). American-Eur J. Toxicol. Sci. 2 (4): 196-202.

- Obiakor MO, Okonkwo JC, Nnabude PC, Ezeonyejiaku CD (2012). Ecogenotoxicology: Micronucleus Assay in Fish Erythrocytes as *In situ* Aquatic Pollution Biomarker: a Review. *J Anim Sci Adb.* 2(1): 123-133.
- Obiakor MO, Okonkwo JC, Nnabude PC (2010a). Micronucleus Profile: An Index of Chromosomal Aberrations in Freshwater Fish (Synodontis clarias and Tilapia nilotica). *Online J. Anim. Feed Res.*, 1 (1): 41-46.
- Oda Y, Nakamura S, Oki I, Kato T Shinagawa J (1985). Evaluation of the new system (umu test) for the detection of environmental mutagens and carcinogens. Mutat. Res. 147: 219-229
- Odeigah C, Osaneyinpeju O (1995). Genotoxic Effects of Two Industrial Effluents and Ethylmethane Sulfonate in Clarias lazera. *Food and Chem Toxicolo.*, 33: 501-505.
- OSPAR Commission (2002). Survey on genotoxicity test methds for the evaluation of waste water within whole effluent assessment. London.
- Pandrangi R, Petras M, Ralph S, Vrzoc M (1995). Alkaline single cell (comet) assay and genotoxicity monitoring using bullhead and carp. Environ. Mol. Mutagen. 26: 345-356
- Pantaleao SM, Alcantara AV, Alves JP, Spano MA (2006). The Piscine Micronucleus Test to Assess the Impact of Pollution on the Japaratuba River in Brazil. Environ. Mutagen. 47 (3): 219-24.
- Park E, Lee J, Etoh H (1993). Fish Cell line (ULF-23HU) Derived from the Fin of the Central Mudminnow (Umbra limi): Suitable Characteristics for Clastogenicity Assay. In Vitro Cell Dev. Biol. 25: 987-994.
- Poele CL, Strik JJT (1975). Sublethal Effects of Toxic Chemicals on Aquatic Animals, In: Koeman, J.H., Strik, J.J.T.W.A. (Eds), Elsevier, Amsterdam.
- Quillardet P, De Bellecombe C, Hofnung M (1982). The SOS chromotest, a colorimetric bacterial assay for genotoxins: validation study with 83 compounds. Mutat Res. 147: 79-95
- Quillardet P, Huisman O, Ari RD, Hofnung M (1982). SOS chromotest, direct assay of induction of SOS function in Escherichia coli K-12 to measure genotoxicity. Proc. Natl. Acad. Sci.79: 5971-5975
- Rishi KK, Grewal S (1995). Chromosome aberration test for the insecticide Dichlorvos on fish chromosomes. Mutat. Res. Genet. Toxicol. 344 (1-2): 1-4.
- Risso-de Faverney C, Devaux A, Lafaurie M, Girard JP, Bailly B, Rahmani R (2001). Cadmium induces apoptosis and genotoxicity in rainbow trout hepatocytes through generation of reactive oxygen species. Aquat. Toxicol. 53: 65-76.
- Rodgers BE, Baker RJ (2000). Frequencies of micronuclei in bank voles from zones of high radiation at Chernobyl, Ukraine. Environ. Toxicol. Chem. 19: 1644-1648
- Roex EWM, Traas TP, Slooff W (2001). Ecotoxicological hazard assessment of genotoxic substances .Research For Man and Environment (RIVM) Report 601503022: 28
- Sahoo PK, Barat A, Ponniah AG (1998). In vitro sister chromatid differentiation and base line sister chromatid exchanges in Channa punctatus. Indian I. Exp.Biol. 36: 1041-1043.
- Saotome K, Hayashi M (2003). Application of a Sea Urchin Micronucleus Assay to Monitoring Aquatic Polllution: Influence of Sample Osmolality. *Mutagenesis.* 18 (1): 73-6.
- Schmid, W (1975). The micronucleus test. Mutat. Res. 31: 9-15.
- Scott D, Galloway SM, Marshall RR, Ishidate Jr. M, Brisick D, Ashby J (1991). Genotoxicity under extreme culture conditions. A report from ICPEMC Task Group 9. Mutat. Res. 257: 147-204.
- Shimizu N, Shimura T, Takana T (2000). Selective elimination of acentric double minutes from cancer cells through the extrusion of micronuclei. Mutat. Res. 448: 81-90
- Shugart LR, Bicham J, Jackim G, McMahon G, Ridley W, Stein J, Steiner S (1992). DNA alterations.In: Huggert, R, Kimerle, R, Mehrle, P, Bergman, H (eds). Biomarkers: Biochemical, Physiological, and Histological Markers of Anthropogenic Stress. Boca Raton, FL: Lewis Publishers Inc, 127-153.
- Shugart LR (1990). DNA damage as an indicator of pollutant-induced genotoxicity. In: Landis, W .G, van der Schalie, W .H (eds). 13<sup>th</sup>
- Symposium on Aquatic Toxicology and Risk Assessment: Sublethal

Indicators of Toxic Stress. Philadelphia, PA: ASTM.:348-355.

- Shugart LR, Theodorakis CW (1994). Environmental genotoxicity: probing the underlying mechanisms. Environ. Health Perspect. 102: 13-17
- Shugart LR, Theodorakis CW (1996). The genotypic diversity approach. Comp. Biochem. Physiol. 113: 273-276.
- Shugart LR, Theodorakis CW (1998). New trends in biological monitoring: application of biomarkers to genetic ecotoxicology. Biotherapy.11: 119-127.
- Singh NP, McCoy MT, Tice RR, Schneider EL (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell. Res.75: 184-191.
- Sinha N (2005). Detection of apoptosis and health monitoring in fishes. In: Kapour, D and Nagpour, N.S (eds), Training on genotoxic assays in fishes. National Bureau of Genetic Resources.Dilkusha, Telibagh, India.68 Pp.
- Stahl RGJ (1991). The genetic toxicology of organic compounds in natural waters and waste waters. Ecotox. Environ. Saf. 22: 94-125.
- Strniste GF, Chen DJ, Okinaka RT (1982). Genotoxic effects of sunlightactivated waste water in cultured mammalian cells. J.Natl. Cancer Inst. 69: 199-203
- Sumathi M, Kaliselvi K, Palanivel M, Rajaguru P (2001). Genotoxicity of textile dye effluent on fish (*Cyprinus carpio*) measured using the comet assay. Bull. Environ. Contam. Toxicol. 66: 407-414.
- Tennant R, Margolin B, Shelby M, Zeiger E, Haseman J, Spalding J (1987). Preciction of chemical carcinogenicity in rodents from in vivo genotoxicity assays. Sci. 236: 933-941.
- Theodorakis CW, Bickham JW, Elbl T, Shugart LR, Chesser RK (1998). Genetics of radionuclide-contaminated mosquitofish populations and homology between Gambusia affinis and G holbrooki. Environ. Toxicol. Chem. 17: 1992-1998.
- Thilly WG, Call KM (1986). Genetic toxicology. In: Klaassen, D.D., Amdor, M.O, Doull, J (eds). Third edition of Casarett and Doull's Toxicology.. New York: Macmillan Publishing Co.174-179.
- Tuvikene A, Huuskonen S, Koponen K, Ritola O, Mauer U, Lindstrom-Seppa P (1999). Oil shale processing as a source of aqqautic pollution: monitoring of the biologic effects in caged and feral freshwater fish. Environ. Health Perspect. 107: 745-752
- Vargas VM, Migliavacca SB, de Melo AO, Horn RC, Guidobono RR, de Sa Ferreira Pestana, MH (2001). Genotoxicity assessments in aquatic environments under the influence of heavy metals and organic contaminants. Mutat. Res. 490: 141-158
- Venegas W, Garcia MD (1994). Genotoxic effects induced in cultured Chinese hamster ovary (CHO) cells by contaminated aquatic environments. Biol. Res. 27: 217-223.

- Walton DG, Acton AB, Stich HF (1984). DNA repair synthesis following exposure to chemical mutagens in primary liver, stomach and intestinal cells isolated from rainbow trout. Cancer. Res. 44 (3): 1120-1121.
- Waters LC, SChenley RL, Owen BA, Walsh PJ, Hsie AW, Jolly RL, Buchanan MV, Condie, LW (1989). Biotesting of waste water: a comparative study using the Salmonella and CHO assay systems. Environ. Mol. Mutagen. 14: 254-263.
- Weishburger JH, Willaims GM (1991). Critical effective method to detect genotoxic carcinogens and neoplasm-promoting agents. Environ. Health Perspec. 90: 121-126
- White PA, Rasmussen JB, Blaise C (1996a). Comparing the presence, potency, and potential hazards of genotoxins extracted from a broad range of industrial effluents. Environ. Mol. Mutagen. 27: 140-151
- White PA, Rasmussen JB, Blaise C (1998a). Genotoxic substances in the St. Lawrence system I: Industrial genotoxins sorbed to particulate matter in the St. Lawrence, St. Maurice and Sagueny Rivers, Canada. Environ. Tox. Chem. 17: 286-303
- White PA, Rasmussen JB, Blaise C (1998b). Genotoxic substances in the St. Lawrence system II: extracts of fish and macroinvertebrates from the St. Lawrence and Sagueny Rivers, Canada. . Environ. Tox. Chem.17: 304-306.
- Winn RN, Norris MB, Brayer KJ, Torres C, Muller SL (2000). Detection of mutations in transgenic fish carrying a bacteriophage lambda CII transgene . Proc. Natl. Acad. Sci.97: 12655-12660.
- Wittekindt E, Saftic F, Mattthess C, Fischer B, Hansen PD, Schubert J (2000). *In situ* investigations for the detection of genotoxic potential in selected surface water with the DNA alkaline unwinding assay using fish cells, early life stage of fish, crustaceae and mussels. Pages 217. In: Grummt, T (ed).
- Wogan GN, Gorelick NJ (1985). Chemical and biochemical dosimetry to exposure to genotoxic chemicals. Environmental Health Perspec. 62: 5-18.
- Wurgler FE, Kramers PGN (1992). Environment effects of genotoxins (ecogenotoxicology). *Mutagenesis*. 7: 321-341.
- Zakour HR, Landolt ML, Kocan RM (1984). Sister chromatid exchange analysis in cultured peripheral blood leucocytes of thye cold water marine fish, Pacific staghorn (Leptocottus armatus): a feasible system for assessing genotoxic marine pollutants. *Basic Life Sci.* 29: 493-508