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Fungal plant diseases are one of the major concerns to agricultural food production world wide. Soil 
borne pathogenic fungi such as Pythium, Fusarium, Rhizoctonia and Phytopthora attack most of the 
economically important crop plants (either through seed root before germination or seedling after 
germination) resulting in loss of billions of dollars. Moreover, the management of chitinous waste is 
also pressing need today. Mycolytic enzymes (chitinases, proteases and glucanase) producing 
microorganisms may help in solving these problems. These microorganisms have ability to lyse the 
fungal cell wall and also have the potential to manage the chitinous waste by producing chitinases. 
Many chitinolytic microorganisms have potential to control fungal plant pathogens but they are not fully 
successful in all the cases due to different geological and environmental conditions. Thus, 
bioprospecting to find novel, highly chitinolytic microorganisms which help in developing potential 
biocontrol agent. Furthermore, to increase the survivability of biocontrol agents, a formulation may also 
be necessary. This review is focused on the progress of chitinase genes, chitinolytic microorganisms 
and their diversity as well as formulation of chitinolytic producers which have the potential to control 
fungal plant pathogens 

 
Key words: Bioprospecting, biocontrol, chitinolytic enzymes, formulation. 

 
 
INTRODUCTION 

 
Fungal plant diseases are one of the major concerns to 
agricultural production. It has been estimated that total 
losses as a consequence of plant diseases reach 25% of 
the yield in western countries and almost 50% in 
developing countries. Of this, one third is due to fungal 
infections (Bowyer, 1999). So there is a pressing need to 
control fungal diseases that reduce the crop yield so as to 
ensure a steady and constant food supply to ever 
increasing world population. Conventional practice to 
overcome this problem has been the use of chemical 
fungicides which have adverse environmental effects 
causing health hazards to humans and other non-target 
organisms, including beneficial life forms. Hence there is  
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increasing concern towards the toxicity and biomagni-
fication potential of these chemicals in agriculture. 
Currently practices based on molecular biology 
techniques which involve development of transgenic 
plants which are resistant to plant pathogens, are being 
used. However there have been few reports of fungal 
infestations in resistant varieties (Schickiler and Chet, 
1997).  

Chitin (a homopolymer of -1,4 linked N-acetylgluco-
samine) has broad spectrum distribution in the biosphere 
(like in the shells of crustaceans, such as crab, shrimp 
and lobster, exoskeleton of marine zoo-planktons like 
coral and jellyfish, insects such as butterflies and 
ladybugs. Therefore formulations based on chitinases, 
enzymes that hydrolyze chitin, offer potential biocontrol 
agents. Chitinases are reported to play a protective role 
against fungal pathogens (Boller, 1985). Besides its 
ability to attack the fungal cell wall directly, chitinases 
release 



 
 
 

 

oligo-N-acetyl glucosamines that function as elicitors for 
the activation of defense-related responses in plant cells 
(Ren and West, 1992).  

The present review provides an overview of current 

knowledge concerning the biofungicidal potential of 

chitinolytic microorganism. 

 

PHYLOGENETIC DISTRIBUTION OF CHITIN IN 

NATURE 
 
Prokaryotes: Chitin is absent in prokaryotes despite its 

chemical similarity to the polysaccharide backbone of 

peptidoglycan. Gooday (1995) has reported chitin as a 
component of many Streptomycete spores and stalks of 

prosthecate bacteria. 
 
Fungi: Most of the fungi contain chitin in the cell wall 

which ranges from 22-40% (Muzzarelli, 1977). Its 
presence together with that of other polysaccharides has 
been used as a criterion for fungal taxonomy. The 
polysaccharide forms fibrils of different lengths depending 
on the species and cellular location (Gow and Gooday, 
1983). 
 
Protista: Chitin is present in cysts, walls of some ciliates, 

amoebae, chrysophytes, algae and in the spines of 

diatoms, the purest form of chitin being isolated from the 
diatom, Thalassiosira fluvitalis (Bartnicki-Garcia and 

Lippman, 1982). 
 
Animals: In animals this polysaccharide is found as a 
structural component and is limited to few organs, such 
as the integuments of arthropods, nematodes and 
mollusks, and in the gut lining and exoskeletons of 
insects. Insect exoskeletons are largely composed of 
chitin-protein complexes, whereas crustacean shells 

contain large proportions of CaCO3 in addition to protein 

(Kramer and Muthukrishnan, 1997).  
Chitin in nature exists between a fully acetylated chitin 

and fully deacetylated chitosan with very little at either 
extreme. The mucorale organism Absidia coerulae has 

been found to have chitosan as a cell wall component 
(Muzzarelli et al., 1994). 

 

MANAGEMENT OF CHITINOUS WASTE 
 

After cellulose, chitin is the most abundant biopolymer. In 
1993, estimated world wide annual recovery of chitin from 
the processing of marine invertebrates was 37,000 
tonnes (Shaikh and Deshpande, 1993), which has 
increased to 80, 000 tonnes in the year 2000 (Patil et al., 
2000). In India alone 60,000 to 80,000 tonnes of chitinous 
wastes are produced annually, from which a lot of chitin 
can be recovered (Suresh and chandrasekaran, 1998). 

  
 

  
 

 

Conventional method: Conventionally, these wastes are 
disposed either by burning or land filling but these 
methods are harmful to the environment since burning 
releases carbon dioxide and carbon monoxide to the 
environment, which adds to global warming while land 
filling is harmful as the degradation is very slow and one 
of the end product is ammonia which is a potent pollutant 
of ground water (Muzzarelli, 1997). The cost of 
transporting such waste, environmental pollution concern 
and ethical questions as to the morality of ignoring 70-
80% of the dry weight of the catch have highlighted the 
necessity of finding alternative method (Simpson and 
Haard, 1985; Nicol, 1991; Vyas and Deshpande, 1991). 

 

Chemical method: Alternatively, the chitin can be 
recovered from chitinous waste materials through 
chemical method that involves demineralization and 
deproteinization mediated by a strong acid or base. 
However, the use of these chemicals may cause partial 
deacetylation of the chitin and hydrolysis of the polymer. 
The chemical treatments also create waste disposal 
problems, because neutralization and detoxification of the 
discharged waste water are necessary. Furthermore, the 
value of the deproteinized liquid is diminished because of 
the presence of sodium hydroxide (Brine and Austin, 
1981; Gagne and Simpson, 1993, Wang et al., 1997, Oh 
et al., 2000). 

 

Biochemical method for deproteinization: To 
overcome these problems, alternative eco-friendly and 
economic methods like use of microorganisms or 
proteolytic enzymes for the deproteinization of crustacean 
waste have been used to produce useful products like 
chitin and chitosan (deacetylated form of chitin) that play 
vital role in sewage treatment, animal feed, food 
preservation and formulations of biofungicides 
(Broussignan, 1968; Gagne and Simpson, 1993; Bustos 
and Michael, 1994; Yang et al., 2000; Gohel et al., 
2005b). 
 

Biological method for degradation of chitinous 
waste: Moreover, the enzymatic degradation of chitinous 
waste involves chitinases, playing a dual role in utilization 
of chitinous wastes and decreasing the production cost of 
the microbial chitinases (Gohel et al., 2005a). Rattanakit 
et al. (2002) reported about chitinase formulation by using 
shrimp shellfish waste as a substrate for solid state 
cultivation of Aspergillus sp. SI-13. Wang et al. (2001) 
reported microbial reclamation of shellfish wastes for the 
production of chitinases where they prepared shrimp and 
crab shell powder by treating shellfish processing waste 
with boiling and crushing and it was used as a substrate 
for chitinolytic microorganisms. Labrie et al. (2001) 
reported effect of chitin waste-based composts on 
oomycete plant pathogens. 



 
 
 
 

Table 1. Role of chitinases in different phyla. 
 

Organism Role of chitinases References 

Bacteria Mineralization of chitin, also in nutrition and parasitism. Flach et al., (1992); Connell 
  et al., (1998). 
   

Fungi Physiological role in cell division, differentiation and nutritional role Kuranda et al. ,(1991); 
 related to mycoparasitic activity (e.g. in Trichoderma sp.). Gooday et al., (1992); Mellor 
  et al. ,(1994); Alalam et al., 
  (1995). 

Plants Defence against fungal and bacterial pathogens by degradation of their Schlumbaum et al., (1986); 
 cell walls. Specific isoforms may play a role in embryo development, De Jong et al., (1992); Leung 
 pollination and sexual reproduction. (1992); Kim and Chung 
  (2002). 

Insects Developmental process of cuticle degradation at different larval stages. Karmer and Fukamiso, 
  (1985); Merzendorfer and 
  Zimoch (2003). 

Protozoa Malarial parasites produce sufficient quantities of chitinase to penetrate Huber et al., (1991); Langer 
 the chitin containing peritrophic matrix of the mosquito midgut. et al. (2002). 
   

Human Chitotriosidase activity helps in defence against nematodal infections. Escott et al. ,(1996); Choi et 
 Moreover, its enzymatic activity is markedly elevated in serum of patients al. ,(2001); Aguilera et al, 
 suffering from lysosomal lipid storage disorders, sarcoidosis and (2003); Gianfrancesco and 
 thalassemia. Musumeci (2004). 

Animal The high chitinase level in goat and bovine blood (serum) might be a Lundblad et al. (1974). 
 function of slow renal secretion which keeps the enzyme level  

 comparatively low in case of abnormal lysozyme production (monocytic-  

 myelomonocytic leukemias and renal diseases).  

Yeast –subunit of toxin secreted by Kluyveromyces lactis has chitinase Butler et al. ,(1991); Kuranda 
 activity which is most likely required for the  subunit to gain entry to the and Robins, (1991); Smit et 
 sensitive cell. Chitinases has an essential role in cell separation during al, (2001); Carstens et al. 
 budding of the chitinous yeast Saccharomyces cerevisiae. ,(2003); David (2004) 
 Saccharomyces cerevisiae chitinase also used as antifungal.   

 
 

 
Table 2. Nomenclature of chitinolytic enzymes. 

 

Chitinolytic enzymes EC No. Mode of action Reference 

Endochitinase, poly[1,4-(N-acetyl--D- 3.2.1.14 Random hydrolysis of N-acetyl--D-glucosaminide Fischer and 

glucosaminide)] glycanohydrolase.  1,4--linkages in chitin and chitodextrins. Stein (1960). 

Exochitinase chitobiases-N- 3.2.1.52 Hydrolysis of terminal non-reducing N-acetyl-D- Cabezas 

acetylhexosaminidase, -N-acetyl-D-  hexosamine residues in N-acetyl--D- (1989) 

hexosaminide N-  hexosaminides  
acetylhexosaminohydrolase     

 
 
 
CHITINASES 
 

Chitinases hydrolyzing chitin (Jeauniaux, 1966) have 
broad spectrum of distribution in nature including 
bacteria, fungi, nematodes, plants, insects, fish and 
human. The physiological functions of chitinases depend 
on their source (Table 1). Use of chitinolytic 
microorganisms take care of waste disposal and 
production of biofungicides for control of fungal plant 
pathogens. 

 
 
 
 
 

Chitinolytic systems: The chitinolytic system comprises 

of an endochitinase, chitobiase and an exochitinase 

whose actions may be synergistic and consecutive in the 
degradation of chitin to free GlcNAc (N-acetyl 

glucosamine). Nomenclature of chitinolytic enzymes has 

been described in Table 2. 
 
Characteristics of plant chitinases: Plant chitinases 

are known as pathogen related proteins (PRPs), because 



  
 
 

 
Table 3. Substrates of chitinolytic enzymes and the products measured (Patil et al., 2000). 

 
Product  Soluble substrates  Insoluble substrates 
measured CMC

A
 Chitool- 4-MU- p-NP- Chitin Colloidal [acetyl- CC-RBB

F
 

 /EGC
B

 igomers oligomers oligomers  chitin 
3
H] chitin  

   C D     
         

Formation of + +   + + +  

reducing sugars         
         

Release of +  + +  +  + 
fluoro-         

/chromophore         

(electrophoresis)         
         

Formation of + +   + +   

oligomers         

(HPLC, NMR)         
         

Decrease in +        

degree of         

polymerization         

(viscosity)         
         

Decrease in +    + +   

degree of         

polymerization         

(staining)         
          

A
 carboxy methyl chitin; 

B
 ethylene glycol chitin; 

C
4-Methylumbelliferyl, 

D
 p-nitrophenyl, 

E
remazol brilliant violet, 

F
colloidal chitin with 

Remazol Brilliant Blue R.
 

 
 
 

chitinases along with -1,3-glucanases are induced by 
pathogens (Wyatt et al., 1991; Abeles et al., 1971; 
Selitrennikoff, 2001). They also inhibit the mycelial growth 
of many pathogenic fungi in vitro. Most of the chitinases 
produced are endo-type which liberate N-  
acetylchitooligosaccharides from chitin. N-
acetylchitooligosaccharides are considered to be elicitor, 
evoking various defense responses. These include the 
production of phytoalexins, induction of PRPs, generation 
of active oxygen species and lignification (Fanta et al., 
2003). Plant chitinases can be subdivided into five 
classes based on their amino acid similarity and presence 
of signal peptide, a hevein (chain binding) domain, a 
hinge region, a catalytic domain and a C-terminal 
extension. 

 

Microbial chitinases: Relatively little is known about the 

number, diversity and function of chitinase produced by 
microorganisms, even though chitin is one of the most 
abundant polymers in nature. Chitinases find application 
in biocontrol, offer an attractive alternative or supplement 
for the control of plant diseases. 
 
Method for the isolation of chitinolytic 

microorganisms: Chitinase activity can be qualitatively 

assayed by determining the clearance zone developed 

around the colonies growing on the colloidal chitin agar 
medium (Cody, 1989; Wirth and Wolf, 1990). The 

 
 
 
 

potency of the isolates for chitinase production is 
determined on the basis of ratio of zone of clearance (CZ) 
to colony size (CS) (Cody, 1989). This procedure requires 
longer incubation time for about 5 to 6 days and is 
relatively less sensitive because of the poor visualization 
of the CZ. More sensitive, rapid and user friendly method 
for screening the chitinolytic microorganisms by 
incorporating calcofluor white M2R (0.001% w/v) in chitin 
agar has been developed (Vadiya et al., 2003a). 
 

 

Detection and quantification of chitinases activity:  
The activity of chitinases can be qualitatively assayed by 
using chitin agar plate either with or without fluorescent 
dye. Activity staining method can also be used for 
qualitative assay. Activity staining can be done by 
incorporating ethylene glycol chitin in the gel (Trudel and 
Asselin, 1989). However, this method has limitations 
since the gel can not be further used for protein staining 
and there is problem of mobility of chitinase in the gel 
because of the presence of polysaccharide in the gel. 
These problems have been over come by running protein 
sample in the gel without incorporating chitin followed by 
diffusion on chitin agar plate containing fluorescent dye 
(Gohel et al., 2005c) . Colloidal chitin with Remazol 
Brilliant Blue R was also used as a substrate for 
colorimetric assay of chitinase (Gómez Ramírez et al., 
2004). Various substrates used and the products 



 
 
 

 
Table 4. Comparison of chemical and biological fungicides. 

 

Characteristic Chemical Biological 

Spectrum Broad Narrow 

Impact on target Immediate Gradual 

Development of resistance Development of resistance has been reported No report on development of resistance 

Impact on environment Leave hazardous residues in food, feed and water Biodegradable, no residues, non- 
  polluting and ecofriendly 

Effect on animal Hazardous for man, mammals, fishes and birds Safe for man, mammals, fishes and birds 

Effect on human health Toxic and carcinogenic Immunological changes and No ill effects reported. 
 impaired reproductive functions.  

 
 

 

measured for the estimation of chitinases are listed in 

Table 3. 
 
 

BIOPROSPECTING OF DIVERSE CHITINASES 

 

Biodiversity prospecting or bioprospecting is the 
exploration of wild plants and animals for commercially 
valuable genetic and biochemical resources. In many 
cases bioprospecting is a search for unique bioactive 
compounds in microorganisms, plants and animal 
species that thrive in extreme environments, such as 
rainforests, deserts and hot springs, etc. Within the 
microbial world, a large majority of species are as yet 
unexplored and understanding the genetic diversity within 
microbial world is a first step in mining useful products of 
biological importance. A potentially significant untapped 
source is the ocean. It covers more than 70% of the earth 
and harbors a vast majority of plants, animals and 
microorganisms. The ocean thus represents a virtually 
unexplored resource for discovery of novel compounds 
with useful applications (De-Long, 2005). 
 

 

Diversity of culturable and unculturable 
microorganisms: Majority of bacteria in environmental 
niche cannot be isolated or cultured using traditional 
cultivation methods. Amann et al., (1995) reported that 
the culturability of microorganisms in sea water is as low 
as 0.001% as compared to 0.3% in soil. (Amann et al., 
1995).  

Molecular approaches for characterizing microbial 
species and assemblages have significantly influenced 
our understanding of microbial diversity and ecology. 
These approaches have provided unique insights into the 
uncultured microbial communities of soils and waters 
because they avoid the biases inherent in the traditional 
culture based microbiological techniques (Hugenholtz et 
al., 1998). Coastal sediments play a significant role in 
remineralisation of organic matter (Wollast, 1991; 
Ravenschlag et al., 1999). Few cultivation independent 
studies of microbial diversity in marine sediments have 

 
 

 

been conducted (Gray et al., 1996). The sequences 
recovered in these studies of microbial diversity revealed 
the presence of mainly unknown organisms only distantly 
related to known isolates.  

The metabolic capabilities of unculturable bacteria and 
the role of these microbes in specific biogeochemical 
processes may be different from their culturable 
counterparts. An approach for exploring the metabolic 
capabilities of uncultured bacteria is to examine the 
genes involved in specific biogeochemical processes. 
This approach is a step towards identifying microbial 
groups driving these processes and determining whether 
the metabolism of cultured bacteria adequately 
represents the metabolic capabilities of the uncultured 
bacteria. Studies have already examined several genes 
encoding enzymes mediating biogeochemical reactions in 
C, N, and S cycles and have compared these genes in 
cultured and uncultured bacteria in marine environments. 
These enzymes, genes include, the nitrogen fixing 
enzyme (nifH), nitrite reductase (nirK and nirS), methane 
monoxygenase (pmoA), dissimilatory bisulfite reductase 
(dsv) in sulphate reducing bacteria and nitrous oxide 
reductase (nosZ) in denitrifying bacteria (Cottrell and 
Kirchman, 1999). Genes of cultured and uncultured 
bacteria were not identical suggesting that cultured 
bacteria do not adequately model biogeochemical 
processes driven by uncultured bacteria. 
 

 

Molecular methods for isolating chitinases from 
uncultivated microorganisms: Genes encoding 
chitinases may be particularly interesting examples of 
non- essential genes in uncultured bacteria since 
previous work has suggested that the evolution of these 
enzymes has been impacted by lateral gene transfer  
(Gracia-Vallve et al., 1999). Chitinases are probably not 
essential for heterotrophic bacteria living in most 
environments including oceans because of availability of 
alternate organic carbon sources (Kirchman and White, 
1999).Many types of cultured bacteria and archaea are 
known to degrade chitin but the identity of uncultured 
bacteria degrading chitin in nature is unknown. Chitinase 



      
 

Table 5. Summary of chitinase genes.      
 

       
 

Source Host Genes cloned Remarks Reference   
 

Aeromonas Bacillus Chitinase (CTS) Increase in biocontrol potential Wiwat   
 

hydrophila, thuringiensis   et al., (1996)   
 

Pseudomonas var.      
 

maltophila israelensis      
 

Aeromonas caviae E. coli Chitinase (Chi Highly substrate specific Lin et al.   
 

Bacillus 

 A)  ,(1997).   
 

B. Chitinase (TP-1) Tested against Spodoptera exigua Tantimavanich   
 

licheniformis thuringiensis  larva et al., (1997).   
 

Bacillus circulans E. coli Chitiase (Chi AI) Bacillus circulans promoter could be Zheng et   
 

   recognized by E.coli transciption al.,(1998).   
 

Vibrio furnissii 
  system    

 

E. coli N- Unique substrate specificity and shares Chitlaru et al.,   
 

  Acetylglucosami similarity with 5 bacterial and one yeast (1996).   
 

  nidase (Exo II) -glucosidase    
 

  Chitodextrinase Periplasmic, converts chitooligomers to Keyhani and   
 

  (Endo I) dimer and monomer Roseman   
 

Xanthomonas spp. 
   (1996).   

 

E. coli Chitinase (Chi Four domains with a family 18 catalytic Sakka et al.,   
 

Serratia 

 A) domains (1998).   
 

E. coli N- Main catalytic domain is domain III with Tews et al.,   
 

marcescens  acetylglucosami /  barrel fold. (1996).   
 

  nidase (Chb)     
  

 

 
Table 6. Chitinase gene transformed transgenic plants. 

 
Transgenic Gene Source Pathogen Reference 

 

plant    

Mora and Earle 
 

Broccoli Endochitinase Trichoderma Alternaria sp. 
 

  harzianum  (2001) 
 

Cucumber Chitinase (RCC2) Oryza sativa Botrytis cinerea Tabei et al., (1998) 
 

Elite indica rice PR-3 chitinase (RC7) O. sativa R. solani Datta et al., (2001) 
 

Grapevine Class-I chitinase (RCC2) O. sativa Uncinula necator Yamamoto et al., 
 

Indica rice 
 

O. sativa 
 (2000) 

 

Classs-I chitinase (Chi11) R. solani Datta et al., (2000) 
 

Japonica rice Class-I chitinase (Cht-2, O. sativa Magnaporthe grisea Nishizawa et al., 
 

 Cht-3) 
T. harzianum 

 (1999) 
 

Potato Endochitinase [ThEn-42 Alternaria alternata, A. solani, Lorito et al., (1998) 
 

 (chit42)]  Botrytis cinerea, R. solani  
 

Strawberry Chitinase O. sativa Sphaerotheca humuli Asao et al., (1997) 
 

Tobacco Endochitinase [ThEn-42 T. harzianum Alternaria alternata, A. solani, Lorito et al., (1998) 
 

 (chit42)]  Botrytis cinerea, R. solani  
 

Wheat Chitinase (chi11) O. sativa Fusarium graminearum Chen et al., (1999) 
  

 
 

 

genes cloned directly from uncultured marine 
microorganisms suggested the presence of a large pool 
of uncultured chitin degrading bacteria in aquatic 
systems. Information on bacterial chitinase genes is  

largely restricted to cultured -proteobacteria or gram 

positive bacteria. Since -proteobacteria are widespread 

in the ocean (Giovannoni et al., 2000), comparing 

 
 
 

 

chitinase genes in cultured and uncultured bacteria in this 
phylogentic group will prove informative. Gram positive 
bacteria are quite rare in sea water (Giovannoni et al.,  

2000). To access chitinase genes in uncultured -
proteobacteria and in other bacteria, it may be possible to 

use a PCR based approach with oligonucleotide primers 

patterned after conserved amino acid residues or after 



 
 
 

 

conserved nucleotide sequences of chitinase genes in 
cultured bacteria (Suitil and Kirchman, 1998).  

Molecular methods are needed to study chitinase 
producers without the isolation of bacteria in pure 
cultures. Methods that use nucleic acid probes and PCR 
primers cannot be designed solely with cultured bacteria 
because nucleotide sequences of chitinase genes from 
cultured bacteria so far characterized are very different 
suggesting that the chitinase sequences from uncultured 
bacteria will differ from the culturable ones (Cottrell et al., 
1999). One alternative approach that does not rely on 
conserved nucleotide sequences is to construct genomic 
libraries to retrieve genes from natural bacterial 
communities without cultivation (Schimidt et al., 1991). 

Bacterial chitinase genes have been retrieved from 

diverse terrestrial environments including alkaline soils, 

sandy soils, and pastures. However studies of chitinases 
from aquatic systems are quite rare. 
 
 
 
Biogeographical distribution of functional chitinases: 
Abundant production of chitin in sea, suggests that most 
marine bacteria are able to degrade chitin. However, 
studies with cultures showed that relatively few marine 
bacteria degrade chitin, ranging from 0.4- 19 % of the 
total cultured bacteria (Okutani et al., 1975). Extensive 
studies have been carried out for chitinase genes from 
diverse terrestrial environment such as grassland (Krsek 
et al., 2001), alkaline soil (Tsujibo et al., 2003), and sandy 
soil (Williamson et al., 2000). However few reports are 
available for chitinases in aquatic system (kirchman et al., 
1999). The diversity of chitinase genes from the 
community DNA isolated from diverse aquatic habitats 
has been studied. Such studies have attempted to 
attribute biogeographical distribution of functional 
chitinases. Comparison of chitinase gene sequences 
from environments with distinct chemical and physical 
characteristics may yield insight into how environmental 
conditions select for enzymes with novel properties. The 
culture independent recovery of microbial genomes from 
environmental samples can be used to explore the nature 
of microbial community network and to monitor 
community structure over time (Lecleir et al., 2004).  

When chitin degradation by the soil bacterium Serratia 
marcescens was investigated, it was found that in 
addition to chitinases, the bacterium also makes a protein 
called CBP21 which binds to and disrupts the chitin 
polymer making it more accessible to degradation by 
chitinases. It have been reported that adding CBP21 
dramatically speeds up the degradation of chitin by 
chitinases. CBP21 works by binding to chitin through 
highly specific interactions that disrupt the chitin structure 
making the individual sugar chains in the chitin polymer 
more amenable to enzymatic degradation (Suzuki et al., 
1998; Vaaje-Kolstad et al., 2005). 

 
 
 
 

 

The discovery of this new protein that participates in 
chitin degradation has many potential applications. For 
example, transgenic plants that express both chitinases 
and CBP21 would be able to combat fungi by degrading 
chitin in their cell walls. A better understanding of natural 
chitin turnover increases our ability to interfere with chitin 
metabolism in insects and other microorganisms (Broglie 
et al., 1991; Jach et al., 1995; Ding et al., 1995; Vaaje-
Kolstad et al., 2005). 
 

 

BIOCONTROL 
 
Microbial ecology principles will be important in any future 
efforts to practice ecofriendly pest management.  

Presently, we lack a complete understanding of a 
number of important issues relating to interactions 
between pests and crop plants as well as between pests 
and other microorganisms. A lack of understanding of 
these interactions limits our ability to understand the 
processes that occur during our efforts to implement 
ecologically crop management. Unless a more thorough 
understanding of the ecofriendly principles dictating 
microbial and plant interactions is obtained, efforts to 
restore ecological integrity will remain empirical and will 
lack transferability between systems. On the other hand, 
by understanding particular model systems in which 
ecological restoration can be successfully implemented, it 
should be possible to develop common strategies and 
practices by which pest management can be relied upon 
in the future. The important ecological principles that will 
need to be understood as well as recent attempts to 
obtain information in these areas, will now be presented. 

The general mechanism of biological control can be 
divided into direct and indirect effects of the biocontrol 
agent (BCA) on the plant pathogen. Direct effects include 
competition for nutrients or space, production of antibiotic 
and lytic enzymes, inactivation of the pathogen’s 
enzymes and parasitism. Indirect effects include all those 
aspects that produce morphological and biochemical 
changes in the host plant, such as tolerance to stress 
through enhanced root and plant development, solubili-
zation or sequestration of inorganic nutrients, and 
induced resistance (Viterbo et al., 2002). 

 

a) Competition for substrates and site exclusion: It is 
a common mechanism for control of fungi where the 
antagonist and the pathogen are closely related (Muslim 
et al., 2003). There are many reports for controlling fungal 
wilt caused by Fusarium using non- pathogenic Fusarium 
(Lauter et al., 1990). Since both are closely related both 
will compete for the same nutrient and site of infection 
.For example it has been shown that when used in field 
they compete for carbon source and for site of  
infection (Larkin et al., 1998; Muslim et al., 2003). Root 



 
 
 

 

colonization by introducing a more efficient root colonizer 
such as fluorescent pseudomonas (Plant Growth 
Promoting Rhizobia, PGPR) has also been shown to 
reduce the population of major and minor pathogens. 
Pseudomonas aeruginosa PNA1, isolated from 

rhizosphere of chicken pea plants, has been shown to be 
effective against a number of phytopathogenic fungi and 
oomycetes (Anjaiah et al., 2003) 
 

 

b) Antibiosis : It is one of the important mechanisms of 
control of fungal infection. A number of highly effective 
disease-suppressive agents are found among the 
fluorescent pseudomonads, making this group of bacteria 
the most widely studied group of antibiotic producers in 
the rhizosphere. The first antibiotic clearly implicated in 
biocontrol by fluorescent pseudomonads was the 
phenazine derivatives that contribute to disease 
suppression. Although bacilli have received less attention 
as potential biocontrol agents than pseudomonads, 
evidence indicating that they may promote effective 
disease suppression is accumulating. The bacilli are 
particularly attractive for practical use because they 
produce stable endospores, which can survive the heat 
and desiccation conditions that may be faced by 
biocontrol agents (Turner and Backman, 1991; Lumsden 
et al., 1995; Osburn et al., 1995; Handelsman and Stabb, 
1996). Trichoderma and Gliocladium are closely related 
funga1 biocontrol agents. Each produces antimicrobial 
compounds and suppresses disease by diverse 
mechanisms (Howell et al., 1993). 
 

 
c) Induced systemic response (ISR): It is defined as 
the process of active resistance dependent on the host 
plant’s physical and chemical barriers, activated by biotic 
and abiotic agents (inducing agent) (Leeman et al., 
1996). This response involves production of many 
pathogenesis related proteins (PR-proteins) which mainly 
include (a) phenol oxidases, peroxidases and 
polyphenoloxidases (Nicholson and Hammerschmidt, 
1992; Wojtaszek, 1997) and (b) enzymes like -1,3 
glucanases, chitinases, -1,4 glucosidases and N-
acetlyglucosaminidases (Heil and Bostock, 2002). 
Changes that have been observed in plant roots 
exhibiting induced system resistance include: (1) 
strengthening of epidermal and cortical cell walls and 
deposition of newly formed barriers beyond infection sites 
including callose, lignin and phenolics (Yedida et 
al.,1999); (2) increased levels of enzymes such as 
chitinases, peroxidase polyphenol oxidase, and 
phenylalanine ammonia lyase (Nicholson and 
Hammerschmidt, 1992; Wojtaszek, 1997); (3) enhanced 
phytoalexin production (Marley and Hillocks, 1993); and  
(4) enhanced expression of stress-related genes (Zhang 

  
  

 
 

 

et al., 2002). However, not all biochemical changes are 

found in all bacterial-plant combinations. 
 

 

d) Parasitism and production of extracellular 
enzymes: This is also one of the important biocontrol 
mechanisms for plant disease control. The ability of 
bacteria, especially actinomycetes, to parasitize and 
degrade spores of fungal plant pathogens is well 
established (Nelson et al., 1986).  
Considerable effort has gone into identifying cell wall 
degrading enzymes produced by biocontrol strains of 
bacteria even though relatively little direct evidence for 
their presence and activity in the rhizosphere has been 
obtained. Chitinolytic enzymes produced by both Bacillus 
cereus (Chang et al., 2003) and Pantoea agglomerans 

are involved in biocontrol of fungal pathogens (Bonaterra 
et al., 2003). 
 

 

Strategies used in biocontrol:The most widely used 
strategy for the biocontrol involves the expression of 
heterologous chitinase and glucanase genes in plants to 
reinforce the primary defence responses. Studies have 
confirmed that these genes and their protein products are 
important players in the defence responses of plants. The 
levels of chitinase and glucanase increase dramatically 
as soon as a pathogen attack occurs (Ferraris et al., 
1987). Both these enzymes are responsible for disrupting 
the fungal cell wall and/or prevention of hyphal growth 
(Vaidya et al., 2001; Gohel et al., 2004), and therefore 
preventing the pathogen from further colonising the plant 
tissue. Over expression of these genes will therefore 
cause higher levels of the enzymes on the plant cell 
surface, which might lead to a faster and more effective 
interaction and neutralisation of the invading pathogen.  

Another strategy that is based on the same principle, 
involves the expression of antifungal peptides that show 
specific activity against a pathogen such as Botrytis 
cinerea ( Monteiro et al., 2003). Antimicrobial peptides 
are found in most plant species and a specific peptide 
often provides resistance to one or more pathogens. The 
mechanism of their action often entails the prevention of 
hyphal growth, once again limiting the infecting pathogen 
to the initial point of infection.  

Chitinases not only play an important role in the 
defence mechanisms of plants, but also in the 
mycoparasitic processes of fungi. Mycoparasitic and 
antagonistic fungi have been studied in order to develop 
a biological alternative to the chemical fungicides 
currently dominating agricultural practices (Lorito et al., 
1998; Frankowski et al., 2001; Masih et al., 2000 and 
2001).  

The antagonistic activity of biological control agents 

towards phytopathogenesis is based on the secretion of 



 
 
 

 

the extracellular lytic enzymes. The antifungal 
mechanism of Trichoderma, extensively studied and 
widely used biocontrol fungus, relies on cell wall 
degrading enzymes such as chitinases, proteases and 
glucanases (Lorito et al., 1998). These enzymes are 
strong inhibitors of many important plant pathogens. The 
chitinases are able to lyse the chitin of cell wall of the 
mature hyphae, conidia, chlamydospores, and sclerotia. 
Trichoderma chitinases are substantially more antifungal 
than any other chitinases purified thus far from any other 
source when assayed under the same conditions. They 
are more active than corresponding plant enzymes, 
effective on a much wider range of pathogens, and are 
nontoxic to plants at high concentrations. The 
Trichoderma chitinase genes are capable of producing 
chitinolytic enzymes which reach the antifungal activity 
level of some chemical fungicides and extensive testing 
in vitro has shown that there are virtually no chitinous 
pathogens resistant to Trichoderma chitinases and hence 
they have become excellent candidates for reinforcing 
plant defense hypersensitive reactions (Perez et al., 
1994). Proof of this concept has been clearly 
demonstrated within the agricultural community with the 
use of the Trichoderma harzianum 42kD endochitinanse 
gene (Carsolio et al., 1999; Margolles et al., 1996); 
transgenic lines of various agricultural crops including 
apple have been established and pathogenicity trials 
have clearly demonstrated improved resistance when 
plants were challenged with disease causing fungal 
pathogens (http://www.glfc.cfs.nrcan.gc.ca). 
 

 

OPTIMIZATION AND FORMULATION OF 

CHITINOLYTIC ENZYMES AND MICROORGANISMS 
 
Biofungicides for control of seedling diseases of 
economical important crop plants are attacked by various 
soil borne pathogenic fungi such as Pythium, Fusarium, 
Rhizoctonia , Phytopthora and others which cause either 
seed root before germination or seedling after 
germination resulting in billions of dollars of cumulative 
crop losses (Hebbar and Lumsden, 1999). Pigeonpea 
(Cajanus cajan) is very important legume of India and 
Fusarium wilt of pigeonpea causes loss of several million 
US$ (Reddy et al., 1990). Apart from Cajanus cajan there 
are many important crops found globally as well as in 
India, which are infested by Fusarium wilt such as melon 
(Luo et al., 2001), citrus fruit, groundnut (Manjula et al., 
2004) cotton (Emani et al., 2003), wheat (Sivan and Chet,  
1986), spinach (Tsuda et al., 2001), barley (Schwarz et 
al., 2001), cucurbits (Freeman et al., 2002), banana 
(Pegg et al., 1996), cabbage, tomato (Pascual and 
Melgarejo, 1997), cucumber (Martinez et al., 2003) 
sweet-potato (Clark and Moyer, 1988) and peas 
(Armastrong and Armastrong, 1974). Thus there is need 
to control the Fusarium wilt and other pathogens. 

 
 
 
 

 

Moreover, comparatively chemical fungicides are not 
efficient when compared to the biological fungicides 
(Table 4). Thus, optimization of product and its 
formulation are most critical aspects to translate 
laboratory scale activity into adequate field performance 
for any crop-protection agent. The formulation must be 
user friendly which has to fulfill several criteria including 
allowing a microorganism to retain and express its 
fungicidal properties; providing a significant extension of 
shelf life. Moreover, the critical important step which is 
facing problem in industrial scale is to harness the 
organism to industrial process of mass production 
especially in fermentation as well as incorporation into 
user-friendly formulations (De-Vrije et al., 2001). 
 

 

Different strategies for enhancing chitinolytic 
enzymes production and biomass: Before formulation 
of chitinolytic microorganisms, the favourable medium 
constituents are required for increasing the growth and 
production of chitinolytic enzymes. Moreover to attain a 
cost effective process, it is imperative to select a growth 
medium. There are large numbers of reports available on 
conventional or one-factor-at a time and statistical 
method for designing/selecting the media for enhancing 
the growth and production of chitinolytic enzymes (Vaidya 
et al., 2001; Felse and Panda, 1999; Madhavan-
Nampoothiri et al., 2004). However, the conventional or 
one-factor-at a time approach becomes extremely time 
consuming, expensive and unmanageable when large 
numbers of variables have to be studied and does not 
depict the combined effect of all the factors involved. 
Moreover, the method requires large number of 
experiments to deter - mine optimum levels, which are 
unreliable (Halland, 1989; Vaidya et al., 2001). Optimizing 
all the affecting parameters by statistical experimental 
designs can eliminate these limitations of a single factor 
optimization process collectively (Halland, 1989; 
Montogomery, 2000). The statistical methodologies are 
preferred because of various advantages in their use 
such as rapid and reliable short-listing of nutrients, 
understanding the effect of the nutrients at varying 
concentrations and significant reduction in total number of 
experiments resulting in saving time, glassware, 
chemicals and manpower (Srinivas et al., 1994; Carvalho 
et al., 1997; Vaidya et al., 2003). There are many other 
techniques available for screening and optimization of 
process parameters including non-statistical and self-
optimization techniques (Felse and Panda, 1999). 
Numbers of statistical softwares are commercially 
available to carry out optimization such as Analyse-It, 
STATGRAPHICS Plus 5, Statistica, JMP Statistical 
Discovery Software, Design-Expert and MINITAB 
Release 13.3 (Sekel, 2001). After statistically optimizing 
the medium constituents in flask level, the resulted 
medium will be further used in fermentation process to 



 
 

 

scale up the fungicidal microorganisms. Several 
methodologies have been adopted for mass production, 

but only submerged fermentation is widely used for 
economical approach in terms of high yields in relatively 

short period of time. 
 

 

Strain improvement of chitinase production: Although 

naturally occurring organisms provide a major source of 
chitinolytic enzymes, genetic improvement plays an 
important role in their biotechnological applications. There 
are number of different methods available for strain 
improvement for increasing the chitinase production. 
These involve: 
 

1) Random mutagenesis through physical (UV, Gamma 
etc.) and chemical (EMS) agents which have been 
employed to obtain improved biological strains, including 
Pantoea dispersa (Gohel et al., 2004) and Alcaligenes 
xylosoxydans (Vaidya et al., 2003);  
2) Site directed mutagenesis where antifungal and 
chitinase specific activities of Trichoderma harzianum 
CECT 2413 were increased by addition of a cellulose 
binding domain (Limon et al., 2004);  
3) Transposon mutagenesis and deletion analysis 
revealed that chi D codes for a transacting repressor of 
chitinase and chitobiase expression, where as the chi E 
codes for an inducer. Suzuki et al., (1998) have reported 
the presence of CBP21 (chitin binding protein) a major 
protein in the culture supernatant when S. marcescens 
2170 was grown in the presence of chitin. Comparison of 
the amino acid sequence with that of other proteins 
showed that, CBP21, is similar to CHB1 of Streptomyces 
olivaceoviridis suggesting a wide distribution of this type 
of chitin binding protein in chitinolytic microorganisms;  
4) Fungal protoplast fusion was used to improve the 
strain of Trichoderma sp. Limon et al. (2001) have 
produced hybrid chitinases with stronger chitin-binding 
capacity by fusing to Chit42 a Ch B D from Nicotiana 
tabacum ChiA chitinase and the cellulose binding domain 
from cellobiohydrolase II of Trichoderma reesei. In 
addition to mutation and protoplast fusion, molecular 
cloning is being effectively used to achieve 
overproduction of chitinases, change in the induction 
pattern or change in the localization of chitinase. From 
studies in Serratia liquefaciens (Joshi et al., 1988) the 
genes chi B, chi C, chi D and chi E were found to be 
closely linked with chi A at a separate location on the 
chromosome. The chi A and chi B genes code for 
chitinases, and chi C codes for chitobiase. Connell et al. 
(1998) have conducted experiments to show that 
endochitinase encoded by chi A gene is an extracellular 
protein, secreted by the eps system, which is also 
responsible for secreting the cholera toxin. These findings 
indicate that the chi A and cholera toxin have functionally 
similar extracelluar transport signals that are 

  
  

 

 

essential for eps dependent secretion. The description of 

some chitinase genes reported has been summarized in 

Table 5. 
 
 

Transgenic plants: The activity of chitinase against fungi 

makes it an attractive candidate for developing resistant 

varieties of agriculturally important crop plants. Number of 
transgenic plants have been created by transforming 
chitinase gene from various microbial and plant sources. 
Table 6 gives the information regarding chitinase based 
transgenic plants. 

 

Induction of chitinases: Production of chitinase in 
microorganisms is controlled by a repressor-inducer 
system in which chitin or the products of its degradation 
serve as inducers (Monreal and Reese, 1969). 
Chitinolytic microorganisms have trace quantities of 
constitutive enzymes that are continuously released even 
under starvation conditions. Chitobiase is always found to 
be produced along with chitinase in all media and is not 
found to get affected by catabolite repression. It was also 
found to be very effective in degrading the dimers and 
trimers of N-acetyl glucosamine, thus contributing to the 
release of chitinase inducers (Felse and Panda, 1999).  

Repression of chitinase synthesis by glucose in almost 
all organisms indicates that catabolite repression may be 
involved in the regulation of microbial chitinases. Saito et 
al., (1998) have detected the role of glk A encoding 
glucose kinase to play a role in glucose repression of chi-
tinase production in Streptomyces lividans. When a DNA 
fragment carrying glk A was introduced into a S. lividans 
mutant defective for glucose repression, its ability to 
utilize glucose and glucose repression of chitinase 
production was restored. This finding indicated that glk A 
is involved in catabolite repression.  

In Pseudomonas fluorescens BL 915, Gaffney et al., 
(1994) found that the expression of uncharacterized 
chitinolytic activity was regulated by a two-component 
system consisting of a transmembrane environmental 
sensor protein (Lem A) and cytoplasmic response 
regulator protein (Gac A). Cloning of the gac A regulatory 
region from the strain BL 915 in certain heterologous soil 
isolates of Pseudomonas fluorescens was found to 

stimulate expression of otherwise latent genes indicating 
that global regulation by a two component system may be 
a common feature of the regulation of chitinase 
expression. 
 

 

FORMULATIONS 
 
The formulations must be fundamentally compatible with 

the biocontrol agents and generally, the formulated 

materials have superior action as compared to 



 
 
 

 
Table 7. Biocontrol agents available in market for control of fungal plant pathogens. 

 

Agents Target pathogens/Disease Plant  Reference 
                

Candida oleophila Botrytis spp., Penicillium spp. citrus, pome fruit  Ecogen, Inc., (2005) Cabot Blvd. 
I-182    West, Langhorne, PA 19074 

Trichoderma spp. pathogenic fungi that cause wilt, take-all, flowers, fruit,  Binab, Box 161, 546 22 Karlsbor, 
 root rot, and internal decay of wood ornamentals, turf, and  Sweden 
 products and decay in tree wounds vegetables              

Fusarium Fusarium oxysporum, Fusarium basil, carnation,  www.biofox.com 

oxysporum moniliforme cyclamen, tomato              

Trichoderma spp. Sclerotinia, Phytophthora, Rhizoctonia flowers, strawberries,  www.bioplant.dk 
 solani, Pythium spp., Fusarium, trees, vegetables              

 Verticillium               

Pseudomonas Dollar spot, Anthracnose, Pythium turf  www.ecosoil.com 
aureofaciens aphanidermatum, Michrochium patch               

 (pink snow mold)               

Pseudomonas Botrytis cinerea, Penicillium spp., Mucor fruit, citrus, cherries,  www.villagefarms.com/biosave/ind 
syringae pyroformis, Geotrichum candidum and potatoes  ex.html   

Pseudomonas Frost damage, Erwinia amylovora, and almond, apple, apricot,  www.nufarm.com 
fluorescens A506 russet-inducing bacteria blueberry, cherry,              

  peach, pear, potato,              

  strawberry, tomato              

Pseudomonas leaf stripe, net blotch, Fusarium sp., spot barley and oats  www.bioagri.se 

chlororaphis strain blotch, leaf spot, and others               

Bacillus Rhizoctonia, Pythium, Fusarium,and Greenhouse and  www.growthproducts.com 
subtilisGB03, other Phytophthora nursery              

B. subtilis,B.                

lichenformis, B.                

megaterium                

Burkholderia Rhizoctonia, Pythium, Fusarium, and alfalfa, barley, beans,  www.helenachemical.com 
cepaciatype disease caused by lesion, spiral, lance, clover, cotton, peas,              

Wisconsin and sting nematodes grain sorghum,              

  vegetable crops, and              

  wheat              

Myrothecium Parasitic nematodes cole crops, grape,  www.valent.com 

verrucaria  ornamentals, turf, trees              

Bacillus Dollar spot, low and moderate disease turf  www.novozymes.com/ecoguard 
licheniformis pressure               

SB3086                

Fusarium Fusarium oxysporum asparagus, basil,  Natural Plant Protection, Route 
oxysporum  carnation, cyclamen,  d'Artix B.P. 80,64150, Nogueres, 

  gerbera, tomato  France 
Agrobacterium crown gall disease caused by fruit, nut, and  www.crowngall.com 
radiobacter Strain Agrobacterium tumefaciens ornamental nursery              

84  stock              

Bacillus subtilis Fusarium spp., Rhizoctonia spp, soybean, alfalfa,  www.beckerunderwood.com 
MBI600 (rhizobia Aspergillus dry/snap beans,              

also in formulation)  peanuts              

Burkholderia Rhizoctonia solani, Fusarium spp., vegetables, cotton  www.soiltechcorp.com 

cepacia Pythium spp.               

Bacillus subtilis Rhizoctonia solani, Fusarium spp., cotton, legumes  www.gustafson.com 
GB03 Alternaria spp., and Aspergillus spp. that               

 attack roots               

Coniothyrium Sclerotinia sclerotiorum and S. minor cucumber, lettuce,  BIOVED, Ltd., Ady Endre u. 10, 
minitans  capsicum, tomato, and  2310 Szigetszentmiklos, Hungary 

  ornamental flowers in              

  greenhouse production               



      

Table 7. Contd        
       

Streptomyces Fusarium spp., Alternaria brassicola, field, ornamental, and vegetable  www.agbio-inc.com   

griseoviridis strain Phomopsis spp., Botrytis spp., Pythium crops      

K61 spp., and Phytophthora spp. that cause       

 seed, root, and stem rot, and wilt disease       

Agrobacterium Agrobacterium tumefaciens fruit and nut trees, caneberries,  www.bio-care.com.au   

radiobacter K1026  roses, and other ornamental      

  nursery stock      

Pythium oligandrum Pythium spp., Fusarium spp., Botrytis vegetables (tomatoes, potatoes,  biopreparaty@mbox.vol.cz  
 spp., Phytophthora spp., Aphanomyces pepper, cucumbers,      

 spp., Alternaria spp., Tilletia caries, Brassicaceae vegetables), fruits      

 Pseudocercosporella herpotrichoides, (grapes, strawberries, citrus),      

 Gaeumannomyces graminis, Rhizoctonia legumes, cereals, canola, forest      

 solani, Sclerotium cepivorum nurseries and ornamental plants      

Gliocladium soilborne pathogens that cause seed, roo ornamental, vegetable, and tree  www.agbio-inc.com   

catenulatum and stem rot, and wilt disease crops      

 
 
 

 

unformulated materials (Rhodes, 1990). There are 
particular challenges to be faced, because the active 
ingredient is a living organism which must be kept 
relatively immobile and inactive in storage, but quickly 
resumes its normal metabolic processes once applied to 
target site. To achieve this some form of drying or 
lyophilizaion is required (Tariq et al., 1999).  

Fungal antagonists can be formulated as wettable 
powder, granular powder, fluid-bed granules using dextrin 
as binder and a reduced content of alginate. Alginate gel 
has also been used to prepare bacterial and fungal 
formulations (Campbell, 1989; Desai et al., 2002; 
Hokkanen, 1990). Different forms of Penicillium oxallicum 
conidia such as freeze drying and spray drying were used 
for the control of Fusarium wilt in tomato (Larena et al., 
2003).  

Bacterial antagonists have been formulated in variety of 
ways to control plant pathogens. The sporulating, gram-
positive bacteria offer a solution to the problem of stability 
and desiccation. Gram-positive microorganism offer heat 
and desiccation resistant spores that can be formulated 
into stable and dry powder products. Such formulations 
are then usually used as a wettable powder, water-
dispersible granules or dust where proxel will generally 
be used to prevent the microbial contamination (Benitez 
et al., 1998; Hokkanen, 1990; Hornby, 1990).  

Another approach is the suspension of organisms in oil, 
where the purpose is to exclude oxygen which prevents 
respiration (Honeycutt and Benson, 2001). Generally 
active ingredients are used which are encapsulated and 
then suspended in an oil base. Addition of silica gel to oil 
formulation has been found to prolong shelf life as has 
been reported for mutated conidia (Moore et al., 1995 
and 1996; Tariq et al., 1999) 

 
 
 

 

The non spore forming organisms are more difficult to 
formulate because they do not have the longer survival 
time and are readily killed by desiccation. These are 
traditionally formulated into various solid carriers such as 
wettable powder. Liquid formulations with either aqueous 
or mineral oil are user friendly which help in slow, 
continual growth of the organisms. However this problem 
still needs to be solved.  

Chung et al., (2005) have developed formulation 
containing S. padanus + 1% (w/w) PBGG (A granulate 
biofungicide named PBGG which was developed by 
combining Pseudomonas boreopolis with Brassica seed 
pumice, glycerine and sodium alginate) which helped in 
controlling Rhizoctonia solani which cause damping-off of 
Chinese cabbage. Granular formulation of T. virens GL21 
in combination with B. cepacia BC-1 or B. ambifaria BC-F 
was applied as a seed treatment of cucumber, where 
significantly improved suppression of damping-off caused 
by R. solani was reported (Roberts et al., 2005). 
Viswanathan and Samiyappan (2002) have used talc 
based formulation in Pseudomonas strains against red rot 
disease in sugarcane which played role in its 
management. Pesta and rice flour formulations of BNR 
fungi (binucleate Rhizoctonia sp.) provided effective 
control of preemergence damping-off of implants caused 
by R. solani (Honeycutt and Benson, 2001). Biocontrol of 
Rhizoctonia diseases by BNR fungi have been reported 
for bean (Cardoso and Echandi, 1987), cabbage (Ross et 
al., 1998), potato (Escandi and Echandi, 1991), and 
cucumber (Villajuan-Abgona, 1996). Harris et al. (1994) 
reported that isolates of BNR were effective for control of 
damping-off caused by R. solani in Capsicum spp. 
(Honeycutt and Benson, 2001). The list of biocontrol 
agents available in market are listed in Table 7 and rese- 



     

Table 8. Examples of bacterial agents for biocontrol of fungal plant pathogens   
      

  Agents Target Plant Reference 
   pathogens/Disease    

  P. fluorescens VO61 Pythium ultimum Lotus corniculatus Bagnasco et al., (1998) 
  Pichia anomala Penicillium roquefortii Wheat, rye, barley and Petersson and Schnurer (1998) 
    oats   

  P. fluorescens VO61 Pythium ultimum Lotus corniculatus Bagnasco et al., (1998) 
  B. subtilis BACT-D Pythium Tomato Utkhede et al., (1999) 
   aphanidermatum    

  Paenibacillus sp. 300 Fusarium oxysporum Cucumber Singh et al., (1999) 
  Pseudomonas aureofaciences Pythium spp. Sweet corn Mathre et al., (1999) 
  AB254     

  P. aureofaciens AB244  Tomato Warren and Bennett (1999) 
  P. fluorescens VO61 Rhizoctonia solani Rice Vidhyasekaran and Muthamilan, 
     (1999)  

  P. fluorescens WCS358 F. oxysporum f. sp. lini Flax Duijff et al., (1999) 
  P. putida BTP1 Pythium Cucumber Ongena et al., (1999) 
   aphanidermatum    

  Serratia plymuthica Pythium ultimum Cucumber Benhamou et al., (2000) 

  Bacillus brevis Fusarium udum Pigeonpea Bapat and Shah, (2000) 

  Pseudomonas putida B E2 Verticillium dahliae Kleb Strawberry Berg et al., (2001) 

  Alcaligenes xylosoxydans Fusarium udum Pigeonpea Vaidya et al., (2003b) 

  P.dispersa Fusarium udum Pigeonpea Gohel et al., (2004) 
 
 

 

arch reports of available biocontrol agents are listed in 
Table 8.  

The biocontrol developers faced a problem in 
developing the control of diseases because crops are 
grown under a multiplicity of climatic and environmental 
conditions which include temperature, rainfall, soil type, 
crop variety which change from farm to farm or even 
within one field (Tariq et al., 1999). Thus, factors such as 
soil texture, potentiality of biocontrol agent, biotic 
condition and type of pathogens need to be considered 
when attempting to develop new potential biocontrol 
agent for particular area (Powell et al., 1990). 
 

 

FUNGAL PLANT PATHOGEN MANAGEMENT BY 

COMBINATION OF CHEMICAL AND BIOLOGICAL 

FUNGICIDES 

 

Commercial production and application of biopesticides at 
farm level demands a few prerequisites such as viability 
for longer period, high tolerance to variable weather 
conditions and physiological stress associated with 
transportation, storage and application which are cost 
effective, easy to handle, have no adverse effects on 
seed germination and plant growth. Thus, technology 
must be developed to extend their range of effectiveness 
against multiple pathogens as well as formulations that 
provide suitable life, efficiency and user friendliness in the 

 
 

 

environment (De-Vrije et al., 2001). Moreover, replacing 
pesticides entirely by biological agent is not always an 
attainable goal (Benitez et al., 1998). Integrated biological 
and chemical control seems to be a very promising way 
of controlling pathogens with minimal interference with 
the biological equilibrium (Baek and Cook 1982; Lorito et 
al., 1993). Different fungicides and soil fumigants are 
widely used for controlling soil borne plant pathogens. 
Because of the concern regarding the toxicity of these 
compounds, there is a general trend to reduce the 
amounts applied to soil (Chet, 1987). One of the most 
attractive ways of reducing the amounts of fungicide is 
the integration of sub lethal doses of chemicals with the 
biocontrol agent which is resistant to the doses of the 
chemical fungicide. This method of control has been 
found to attain a degree of disease suppression equal to 
that with a full fungicide treatment in a number of cases. 
EI-Tarabilly et al. (2000) reported biological control of 
Sclerotinia minor using a chitinolytic bacterium and 
actinomycetes. Benitez et al. (1998) used Trichoderma 
harzianum with Methyl bromide to control infection of 
R..solani and F. solani on tobacco. Chet et al. (1994) also 
used T. harzianum with captan to control Verticillium 
dohliae infection of potato. Chet (1987) reported that T. 
virens with metalaxyl helps to control the infection P. 
ultimum on cotton. Hader et al., (1979) used T. 
harzianum with PNCB to control R..solani infection on 
egg plant. Elad et al., (1983) also used same 



 
 
 

 

mixture as described by Hader et al. (1979) to control 

R..solani infection of S. rolfsii infection on peanuts. 
 

 

CONCLUSION AND FUTURE CONSIDERATION 

 

Food security is one of the essential existential needs 
which can never be ignored by any society. The world 
population is expected to rise to around 10 billion mark by 
2025. More people mean more food. To supplement the 
nutritional need, agriculture must become intensive and 
sustainable, to maintain and enhance, without destroying 
the environment on which it depends. The development 
of such a global system for sustainable food production is 
one of the greatest challenges faced by the humans.  

The quantum of fertile soil is limited. Secondly the 
expansion of urban settlements, industrialization and 
provision for ever growing civic needs are exerting severe 
pressure on lands reserved for cropping. Most of the 
population explosion is witnessed in developing and 
under developed countries. It is speculated that global 
demand for cereals will increase from 1 billion tonnes to 
2.7 billion tonnes and considering the losses in storage 
and processing, the real need may be about 3.4 billion 
tones. Most of this additional demand needs to be met 
either by improving the crop yield or by preventing 
microbial infection and the post-harvest losses till the 
produce reach the consumers.  

Studies on chitinolytic microorganisms have yielded a 
large increase in knowledge regarding their role in 
inhibition of growth of fungal plant pathogens. Still this 
knowledge is not sufficient enough to formulate a 
preparation based on these agents that can work 
efficiently in all different environmental conditions. The 
biocontrol agents are also affected due to the geological 
and environmental conditions. Studying the 
environmental conditions of the area where biological 
control agent has been employed and statistical based 
formulation approach techniques will increase life span of 
microorganisms in different ecological conditions. 
Moreover, extensive studies are required on the 
maximum utilization of chitinous wastes for production of 
chitinases and biomass. 
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