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The objectives of this study were to determine the factors that influence and control the water table fluctuation in a 
specific geomorphologic situation, to develop a forecasting model and examine its potential in predicting water table 
depth using limited data. Prediction of region specific water table fluctuation would certainly guide the way towards 
conceiving, designing and taking scientific measures to ensure sustainable groundwater management. Analysis of 
change in groundwater table depth, groundwater flow directions within the watershed showed that the influencing 
factors of rainfall, groundwater draft from near by structures and the resulting fluctuation in groundwater table depth 
were well correlated in a specific geological situation. Models for prediction of water table depth were developed 
based on artificial neural networks (ANNs). The study employed multilayer feed forward neural network with 
backpropagation learning method to develop the model. The neural networks with different numbers of hidden layer 
neurons were developed using 4 years (2005 - 2008) monthly rainfall, potential evapotranspiration (PET), and water 
table depth from nearby, influencing wells data as input and one month ahead water table depth as output. The best 
model was selected based on the root mean square error (RMSE) of prediction using independent test data set. The 
results of the study clearly showed that ANN can be used to predict water table depth in a hard rock aquifer with 
reasonably good accuracy even in case of limited data situation. 
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INTRODUCTION 
 

Groundwater level is an indicator of groundwater availa- 
bility, groundwater flow, and the physical characteristics of 
an aquifer or groundwater system. In the State of Oris- 
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Abbreviations: PET, Potential evapotranspiration; ANN, 
Artificial neural network; GDM, Gradient Descent with 
momentum; RMSE, Root mean square error; R2, Coefficient of 
determination; GIS, Geographical Information system; 
WTF, Water table fluctuation; W, Weight, the strength of 
connection between neurons; N, number of iteration; x, Input 

value; , Learning rate; , Output; I, Sum of the weighted inputs; 
q, Neuron index of the output layer; εq, Error signal; µ, 
momentum coefficient; ∆w (N+1), Change of weight during N to 
N+1 learning cycles; xnorm, normalized value; x0, Original input 
value; xmax, Maximum of input values; xmin, Minimum of input 
values; WTDt(t), Water table depth in target well at time t; 
WTDi(t), Water table depth in ith (i =1…n) well nearby to target 
well. 

 

 
sa (India), more than 85% of geographical area falls under 
consolidation formations with low groundwater 
development status. Average groundwater development of 
the State has been assessed to be 18.31%, which is far 
below the national average groundwater development. The 
state as a whole has a huge balance of groundwater 
resources with a wide scope for its development (Pati, 
2009). But, due to presence of hard rock areas and many 
associated problems with complex hydrological system, it 
has not been exploited to the desirable levels. 

In last 10 years, out of total monitoring wells, 55% 
showed depletion in water table depth during pre- 
monsoon dry season. This leads to the associated problem 
of lowering tubewell depth and drying of open dug wells in 
these areas. Few areas with associated problems of 
lowering tubewell depth and drying of open dug wells has 
become the major issue. This also indicat- ed the 
decreasing trend of groundwater table depth over a period 
of time. The possible reason could be increase in 
groundwater draft due to population growth, low 

mailto:ranurani@yahoo.com


 

 

 

groundwater recharge etc. As the demand increases, it 
may not be feasible to check the draft of groundwater 
resources but there is a chance to increase the recharge rate 

to the aquifer by suitable means. It is necessary to quantify 
the present rate of groundwater recharge, monitor the 
change in water table depth and then predict the future 
trend of water table depth before any inter- vention. 
Keeping this in view, study was carried out in Munijhara 
watershed of Nayagarh block, Orissa. Present 
groundwater development in Nayagarh block is only 
15.52% (GEC, 1997). 

Management of water resources requires input from 
hydrological studies. This is mainly in the form of estima- 
tion or forecasting of the magnitude of a hydrological 
parameter. Many approaches have evolved over the last 
few decades to make hydrological forecasts which include 
conceptual and statistical methods. The concep- tual or 
physically-based models try to explain the underlying 
processes. But these models require a large quantity of 
good quality data, sophisticated programs for calibration 
and a detailed understanding of the underlying physical 
process. A reliable water supply planning policy, 
specifically during the dry season, necessitates accurate- 
ly acceptable predictions of water table depth fluctuations. 
The prediction of groundwater levels in a well, based on 
continuous monitoring of selected nearby wells is of 
immense importance in the management of groundwater 
resources (Coulibaly et al., 2001). The current trend seems 
to model the data rather than the physical process. The 
main advantage of this approach over traditional methods 
is that it does not require the complex nature of the 
underlying process under conside- ration to be explicitly 
described in mathematical form. This makes ANNs an 
attractive tool for modeling water table fluctuations. 

A comprehensive review of the applications of ANNs to 
hydrology can be found in the ASCE Task Committee 
report (ASCE, 2000a, b). Literature showed that feasibility 
of using artificial neural networks (ANNs) was studied to 
estimate groundwater level in piezometers in unconfined 
chalky aquifer of North France (Lallahem et al., 2005), to 
estimate aquifer parameter values (Balkhair, 2002), to 
forecast the groundwater level using rainfall, temperature, 
and stream discharge as inputs (Daliakopoulos et al., 
2005), and to evaluate the groundwater level in fractured 
media (Lallahem et al., 2004). Affandi et al. (2007) 
compared the capability of an ANN with five different 
backpropagation (BP) algorithms for estimating 
groundwater level fluctuation. Seven different types of 
network architectures and training algorithms were 
investigated and compared in terms of model prediction 
efficiency and accuracy. Result showed that accurate 
predictions were achieved with a standard feed forward 
neural network trained with the Lavenberg- Marquardt 
(Daliakopoulos et al., 2005). 

It is worth mentioning that sufficient lengths of water 
table depth measurements are usually unavailable in 
developing countries (Coulibaly et al., 2001). Such coun- 

tries typically have very few observable wells and lack 
long-period time-series data due to budget limitations and 
government policy (Affandia et al., 2007). This necessi- 
tates developing models that are capable of forecasting 
ground water table depth using limited data. In many other 
areas, efforts were made to develop neural network based 
forecasting models with limited data (Aminian et al., 2005; 
Sudheer et al., 2003; Wang et al., 2008). Keeping it in 
view, an attempt was made to determine the factors that 
influence and control the water table fluctuation in a 
specific geologic situation develop ANN based model and 
test its potential in predicting ground water table depth with 
limited climatic and nearby wells data. 

 
MATERIALS AND METHODS 

 
Study area 

 

The study was carried out in Munijhara micro watershed, which lies 
between 20° 05’and 20° 09’N latitude and 85° 05’ to 85° 09’E 
longitude (Figure 1). The area is located in Nayagarh block of 
Nayagarh district of Orissa (India), which occupies the central part of 
Eastern Orissa and is underlain by hard rocks, includes Khondalite-
Charnockite suit of rocks and granites rocks. Altitude of the region 
varies from 80 - 100 m above mean sea level (MSL). Total area of 
the watershed is 45 km2 out of which only 2.69 km2 (6%) area is 
under forest cover and rest is cultivated, pasture and residential 
areas. The main drain in the watershed is Munijhara with drainage 
density of 0.35 km/km2 and is of third order. Boundaries of watershed 
make the area a typical geo-hydrological unit with single outlet. 
Goundwater flow in the watershed coincides with the topographic 
map of the area. Subsurface lithology (12 – 15 m depth) is dominated 
by granite and hard rock aquifer (CGWB, 2004). From the field 
survey, it was observed that groundwater is being abstracted from 
166 numbers of tube wells and 450 numbers of open wells for 
domestic and agricultural purposes. There is also presence of few 

water storage structures of village ponds and big structures in each 
village but it often get dried during summer season. 

 

 
Climatic condition 

 

Climatically this region is sub humid and receives average annual 
rainfall of 1449 mm, 80% of which occurs in the monsoon season 

(June-September). The mean minimum and maximum temperature 
of this region are 13°C in January and 44°C in May respectively and 
mean relative humidity is 90%. Except monsoon periods, ground- 
water is the only source of available resources both for domestic and 
crop demand throughout the year. 

 

 
Artificial neural networks 

 

Artificial neural network (ANN) is an information processing para- 
digm inspired by biological nervous systems, such as our brain. It 
consists of large number of highly interconnected processing 
elements, called neurons, working together (Tsoukalas and Uhrig, 
1997). An ANN consists of input, hidden and output layers and each 
layer includes an array of processing elements. A neural network is 
characterized by its architecture that represents the pattern of 
connection between nodes, its method of determining the connection 
weights, and the activation function (Fausett, 1994). 
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Figure 1. Geology and geomorphological map of Munijhara watershed. 

 

Feed forward neural network 

The most popular ANN architecture in hydrologic modelling is the 

feed forward neural network trained with a back propagation 
algorithm (ASCE 2000a, b). Feed forward neural networks are 

among the most common neural networks in use (Mehrotra et al., 
1997). Feed forward neural networks have been applied successfully 
for solving different problems since the advent of the error back 
propagation learning algorithm. This network architecture and the 
corresponding learning algorithm can be viewed as a generalization 
of the popular least-mean-square (LMS) algorithm (Haykin, 1999). A 
feed forward neural network consists of an input layer, one or more 
hidden layers of computation nodes, and an 

Where, w=weight; N=number of iteration; x=input value; =learning 

rate; =output; and  is defined as 2. q . / I , I being the sum 

of the weighted inputs, q=neuron index of the output layer, and 
εq=error signal. This training method is known as the standard back 

propagation training method. Since, it uses a form of gradient 
descent, it is assumed that the error surface slope is always negative 
and hence, constantly adjusting weights toward minimum. It is very 
easy for the training process to get trapped in a local minimum. The 
problem of the local minima can be avoided by adding a momentum 
term to the weight change, to permit larger learning rates. The 
change of weight is then computed as follows: 

output layer. Figure 3 shows a typical feed forward network with input 
layer consisting of seven neurons, one hidden layer consisting of 
eight neurons, and output layer consisting of one output neuron. 

w(N  1)  . .  .w(N ) (3) 

The input signal propagates through the network in a forward 
direction, layer by layer. Their main advantage is that they are easy 
to handle, and can approximate any input/output map, as established 
by Hornik et al. (1989). Back propagation learning algorithm used 

gradient descent with momentum term to calculate derivatives of 
performance cost function with respect to the weight and bias 
variables of the network. Each variable is adjusted according to the 
gradient descent with momentum. This is probably the simplest and 
most common way to train a network (Haykin, 1999). For each step 
of the optimization, if performance decreases the learning rate is 
increased. 

Training of a feed forward neural network involves two phases. 
The calculation of the output is carried out, layer by layer in the 
forward direction. The output of one layer is the input to the next 
layer. In the reverse pass, the weights of the output neuron layer are 
adjusted first since the target value of each output neuron is available 
to guide the adjustment of the associated weights. The weights in the 
output and hidden layer neurons can be calculated using equations 
(1) and (2), respectively (Tsoukalas and Uhrig 1996): 

Where, µ=momentum coefficient and ∆w (N+1) =change of weight 
during N to N+1 learning cycles. Therefore, the new value of weight 
becomes equal to the previous value of the weight plus the weight 
change, which includes the momentum term. This training method is 
known as back-propagation with momentum which uses gradient 
descent with momentum (GDM) algorithm. The feed forward network 
with a back propagation-based gradient descent learning rule has 
been shown to be a good choice for solving problems with non-linear 
relationship (Haykin, 1999; Shamseldin, 1997; Hsu et al., 1995; Bose 
and Liang, 1996). Therefore, in this study, we used feed forward 
neural network with back propagation learning algorithm to 
approximate the relation between input parameters (water table 
depth in target and nearby influencing well, rainfall and PET) in 
question, and the resulting output parameter (one month ahead 
water table depth in target well). 

 
Data sets 

Monthly rainfall data during 1993-2007 was collected from different 
departments of Nayagarh and analyzed to determine the rainfall 

w(N  1)  w(N ) . .

w(N  1)  w(N )  .x.Σq 
q1 

(1) 

 
(2) 

distribution. Monthly monitoring of fluctuation in water table depth 

during 2005 - 2008 was carried out in 64 numbers of spatially 
distributed dug wells in Munijhara watershed of Nayagarh block of 
Orissa. Out of total selected dug wells, 55, 25 and 20% of dug wells 
were located in flood plain, granite gneiss and upland plain, 
respectively. Contour map representing the pre and post monsoon 
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water table fluctuation for the entire watershed was prepared by 
krigging method. Analysis of change in groundwater table depth, 
groundwater flow directions within the watershed was carried out. For 
the purpose of model development, monthly PET data were also 
collected for period of 2005-2008. Rainfall and PET were directly 
taken as input variables as these are well known factors that 
influence the water table depth. However, the nearby wells that have 
direct influence on the water table depth of target well were 
determined through a linear cross correlation. In this way, the nearby 
wells having higher correlation coefficient (> 0.80) with the water 
table depth in target wells were selected as input variables for the 
models. A total of 4 years monthly data (January, 2005 - December, 
2008) related to above mentioned variables were used for model 
development. 

 
 

Normalization of data 

Normalization is a transformation performed on input data to distri- 
bute the data evenly and scale it into an acceptable range for the 
network (mostly in the range of 1 - 1 or 0 - 1). Because the neurons 
of the middle layer were assigned a sigmoidal activation function that 

speed-up ANN leaning if input data is in range of 1 - 1 or 0 - 1. 
Keeping this in view, the normalization was carried out so that the all 
input data fall in the range of 0 - 1. The following equation was used: 

( x  x  ⎞ 

Network training, validation and testing 

Before applying the ANN to the data, the input and output data were 
normalized to fall in the range of 0 - 1. The normalized data set was 
divided into three subsets for the purpose of training, validation and 

testing. Out of total 4 years monthly data, 50 and 25% were used for 
model training and validation, respectively and 25% were used for 
model test. The training data set was used to train a neural net by 
minimizing the error of this data set during training. The validation 
data set was used to determine the per- formance of a neural network 
during training. The test set was used for checking the overall 
performance of a trained and validated network. A total of 9 networks, 
3 each for upland plain, flood plain and granite formation were 

developed and trained using SNNS 4.2 software. For ANN 
architectures, the numbers of nodes in the input layer were fixed at 
seven, six and five in case of the models for upland plain, flood plain, 
and granite zones, respectively with one node in output layer. The 
numbers of nodes in the hidden layer of different models were varied 
from 6 - 10. The activation function used was log-sigmoid. Back 
propagation algorithm using gradient descent with momentum term 
was used to train the neural network. Figure 2 shows a typical 
architecture of the ANN (7 - 8 - 1) model for ground water depth 
forecasting in upland plain geological formation. To obtain the best 
ANN architecture, several possibilities were considered in this study. 
Training and validation data sets were shuffled before training and 
validation to ensure the random- ness during ANNs training and 
validation. The networks were trained and performances were 
measured in terms of error rate on 

xnorm  0.10.8| o min | (4) 
training and validation data set simultaneously. Each ANN 
architecture was trained for different learning rates and momentum 

⎝ xmax 
 x

min ⎠ 

where,  xnorm=normalized  value;  x0=original  observed  value; 
xmax=maximum value; and xmin= minimum value. 

 
Model evaluation criteria 

Two different criteria viz: Root Mean Square Error (RMSE) and 
coefficient of determination (R2) were used in order to evaluate the 
effectiveness of each network and its ability to make precise 
predictions. 

The Root Mean Square Error (RMSE) was calculated by: 
 
 
 

 

RMSE  (5) 

 
Where Xi is the observed data,  

' 
is the calculated data and N is 

the number of observations. The RMSE can give a quantitative 
indication of the model error in terms of a dimensioned quantity. An 
RMSE equal to zero indicates a perfect match between the observed 
and predicted values. 
The R2 was calculated by: 

values, and error rate on training and validation data set were 
monitored using error graph module of the software. The training was 
stopped as soon as validation error rate started stabilizing or 
increasing because it may lead to network memorization or over 
training. In this way, by means of trial and error, optimum network 
parameters viz; learning rate and momentum values were deter- 
mined for all three networks for each geological formations of the 
watershed. After training was over, the weights were saved and the 

trained network was run on test data to evaluate the performance of 
these networks. 

 

RESULTS AND DISCUSSION 

Rainfall distribution 

Rainfall analysis (1993 - 2007) showed that mean annual 
and monsoon rainfall of Nayagarh was 1350 and 1131.02 
mm respectively. The standard deviation for annual and 
monsoon (June - October) rainfall were 291.7 and 251.17 
with coefficient of variation of 20.87 and 22.2%, respec- 
tively (Table 1). Kharif, summer and rabi season 
contributes 83, 11 and 4% to mean annual rainfall of the 
area. High demand of water in rainfed area without 
irrigation facilities usually met through groundwater. But, 
status of groundwater development for study area show- 
ed that there is an urgent need to recharge groundwater 

 

R 2  1  Σ( X i 
 X ' ) 2 

Σ( X ' )2 
 

(6) 

through conservation structures. For construction of 
water conservation structures, there is need to predict the 
monsoon rainfall of any area. 

X 2  i 
N 

In R2 efficiency criterion, the best fit between observed and 
calculated values would have R2=1. 

Water table fluctuation 
 

The WTF method requires a very good knowledge of 
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Figure 2. A typical architecture of the ANN (7 - 8 - 1) model for ground water depth forecasting in upland 

plain geological formation. 
 

 
Table 1. Rainfall analysis of Nayagarh (1993 - 2007). 

 

Statistical parameters Annual rainfall (mm) Monsoon rainfall (mm) 

Mean 1350.13 1131.02 

Standard Deviation 291.73 251.17 

Coefficient of variance (%) 21.60 22.00 

Sample variance 85108.94 63084.94 

Kurtosis -0.52 0.25 

Skewness 0.14 0.80 

Range 821.9 - 1824.1 753.6 - 1657.4 

Confidence Level (95.0%) 161.56 139.09 

 

piezometric level throughout the entire basin. This could 
be achieved owing to a very dense observation network 
(64 wells in 40 km2 area) provided mainly defunct wells 
used for domestic purposes only where the rate of 
withdrawal of water is comparatively less. Sophocleous 
(1991) pointed out that the WTF method could be 
misleading if the water level fluctuations are confused with 
those resulting from pumping, barometric, or other causes. 
Care was taken to avoid any interference from pumping 
wells to the monitoring wells. Monthly moni- toring and 
analysis of fluctuation in water table depth during 2005 - 
2008 of was carried out and contour map was prepared for 
pre and post monsoon season. It was observed that the 
groundwater depth in pre monsoon season was almost 
similar, however, there was change in water table depth in 
post monsoon season only. Mean water table depth during 
June-2008 and November-2008 was 81.9 and 84 m, 
respectively, which was the maximum difference in water 
table depth (2.11 m) in last 3 year, that is, 2006 - 2008. 
The reason can be attributed to more number of total rainy 
days (85) and maximum amount of rainfall (1187.9 mm) 
received during monsoon 2008. 

Relationship of water table fluctuation in different 
geological formations 

 
Geological and geomorphological area of watershed was 
extracted using GIS tools from the district resource map of 
Nayagarh developed by Geological Survey of India, 
Bhubaneswar, Orissa (Figure 1). Geomorphologically, the 
watershed was classified as flood plain (23 km2) and 
upland plain (17 km2). Out of total monitoring wells located 
in the watershed, 55% wells are in flood plain area and rest 
25 and 20% are in granite gneiss and up- land plains, 
respectively. Trend of water table fluctuation in different 
geologic formations and all the possible influencing factors 
like rainfall, Potential evapotranspi- ration (PET) and effect 
of nearby monitoring wells in the specific geomorphologic 
conditions that may affect the change in water table depths 
were analyzed. The correla- tion coefficient between 
rainfall, PET and water table fluctuation among the 
monitoring wells located in the flood plain zone was 
worked out to be 0.88 - 0.98. But, in case of upland plain 
areas dominated by hard rocks and granite zones, 
negative correlation between water table fluctuation and 
rainfall was observed. 



 

 
 

 
Table 2. Performance indices of ANN models with different architecturesa . 

 

Geological Formations ANN architecture RMSE(m) R2 

 ANN(7-8-1) 0.83 0.96 

Upland Plain ANN(7-9-1) 0.89 0.98 
 ANN(7-10-1) 0.89 0.95 

 ANN(6-7-1) 0.63 0.87 

Flood Plain ANN(6-8-1) 0.67 0.84 

 ANN(6-9-1) 0.66 0.82 

 ANN(5-6-1) 1.33 0.59 

Granite ANN(5-7-1) 1.82 0.38 
 ANN(5-8-1) 1.81 0.36 

aBased on one year’s test data.    
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Figure 3. Comparison of observed groundwater depths with predicted results using ANN (7 - 8 - 1) model 

for the monitoring well of upland plain geological formation for the period January 2008 - December 
2008. 

 

Performance of ANN models 
 

To evaluate the performance of trained ANN models for all 
the three geological formations, we run the trained and 
validated networks using independent test dataset. Two 
statistical indices of performance were computed for the 
test result: the root mean square error and the coefficient 
of determination (R2). Table 2 shows the performance 
indices of ANN models with different architectures and for 
different locations using the testing data set. The models 
giving lowest RMSE value on test data were selected as 
the best models. In case of upland plain, the model ANN 
(7-8-1) gave the lowest RMSE value 0.83, hence it is 
selected as the best model. Similarly, in case of flood plain, 
the model ANN (6 - 7 - 1) gave the lowest RMSE value 
0.63 and in granite zone the model ANN (5 - 6 - 1) gave 
lowest RMSE value 1.33. These models were selected as 
the best models. It is evident from the table that high 
correlation between observed and predicted result 
(correlation coefficient in the range of 0.84 - 0.98) were 
obtained for the flood plain and upland plain forma- tion 
using different ANN models but for granite formation, 
correlation is somewhat lower. To provide a visual 

interpretation and appreciation of the results, Figures 3 - 5 
showed the variations of observed water table depth and 
those estimated by ANN (7 - 8 - 1) for upland plain 
formation, ANN (6 - 7- 1) for flood plain formation and 
ANN(5-6-7) for granite formation areas of watershed, 
respectively. These figures show good agreement betw- 
een observed and predicted value of water table depth in 
monitoring wells located in upland and flood plain areas. 
While values in the later part of these graphs are slightly 
underestimated by ANN, earlier values are better model- 
ed by it which represent the water scarce period in this 
agro climatic region and therefore this type of better 
prediction accuracy is very much desirable to manage 
ground water resources more effectively. Among all the 
models, the prediction accuracy in flood plain and upland 
plain areas were comparatively better than that of granite 
zone. The result shows that the RMSE values of all the 
models for granite formation were quite high, thereby 
making prediction accuracy relatively low in comparison to 
flood plain and upland plain. It may be due to less influence 
of nearby monitoring wells on water table fluctuation in 
monitoring well in this formation. The RMSE values 
obtained in this study using limited data were well 
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Figure 4. Comparison of observed groundwater depths with predicted results using ANN (6- 

7-1) model for the monitoring well of flood plain geological formation for the period January 
2008 - December 2008. 
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Figure 5. Comparison of observed groundwater depths with predicted results using ANN (5- 

6-1) model for the monitoring well of granite geological formation for the period January 2008 
- December 2008. 

 

compared with some of the similar previous studies that 
used larger data set (Coulibaly et al., 2001; Daliakopoulos 
et al., 2005; Krishna et al., 2008). The results from this 
study suggest that ANN can provide a reliable method to 
forecast water table depth with good accuracy even with 
limited data. 

 
Conclusions 

 
In this study, the factors that influence and control water 
table fluctuation in a specific geologic situation were 
determined and used to develop ANN models for 
forecasting ground water table depth one month ahead for 
different geological formations. The results clearly showed 
that ANN can be used to predict water table depth in a hard 
rock aquifer with reasonably good accuracy even in case 
of limited data situation. The result 

of this is in good agreement with previous related studies 
done with larger length of data. Therefore, it can be 
concluded that an ANN is an effective tool for forecasting 
ground water table depth for the purposes of groundwater 
management, even though only limited data samples were 
available. In this study, the models were calibrated with 
limited input data set monitored during study period only, 
the performance of the model can further be improved with 
sufficient data sets. It would be interesting to find out how 
would other architectures and training algorithms of ANN 
perform in poor data situation. Using other soft computing 
methods to forecast water table depth can also be an 
enlightening study to pursue. 
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