International Journal of Microbiology Research and Reviews ISSN 2329-9800, Vol. 11 (8), pp. 001-008, August, 2022. Available online at www.internationalscholarsjournals.org © International Scholars Journals

Author(s) retain the copyright of this article.

Full Length Research Paper

The aqueous extract of *Codiaeum variegatum* and its fractions exhibit in vitro antiparasitic activity against *Giardia lamblia* and *Trichomonas vaginalis*

Sylvain Nsangou Pechangou¹, Emmanuel Mfotie Njoya¹, Frederic Nico Njayou¹, Kapil Goyal², Rakesh Sehgal² and Paul Fewou Moundipa¹

¹Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé I, 812 Yaoundé, Cameroon

²Department of Medical Parasitology, Postgraduate Institute of Medical Research and Education 160012 Chandigarh, India.

Accepted 24 July, 2022

Abstract

The leaf decoction of *Codiaeum variegatum* is used by Cameroonian local population in the treatment of intestinal infections. The present study was carried out to investigate the antiparasitic activity of the aqueous extract of *C. variegatum* and its fractions against axenic culture of *G. lamblia* and *T. vaginalis*. Trophozoites of *G. lamblia*, and *T. vaginalis* were incubated separately with different concentrations of leaf aqueous extract of *C. variegatum* fractions and sub-fractions for 24 and 48 hours. Metronidazole was used as the positive control. The viability of trophozoites determined by using the quantitative colorimetric [3-(4,5-dimethilthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT) technique. All the extract fractions and sub-fractions were active against *G. lamblia* and *T. vaginalis*. The sub-fraction SF9B showed the highest antiparasitic activity against *G. lamblia* and *T. vaginalis* after 48 hours, but remain lower compared to metronidazole. Sub-fraction SF9, and SF9B2 showed moderate antiparasitic activities. Methanol, ethyl acetate fractions and aqueous extract exhibited low antiparasitic activities. However, no significant difference was observed between the anti-trichomonal activity of the methanol fraction compared to that of the SF9B2 (89.35 ± 5.02μ g/mL) sub-fractions SF9, SF9B and SF9B2 isolated from *Codiaeum variegatum* exhibited giardicidal and antitrichomonal activities therefore supporting the medicinal usage of this plant against intestinal infections.

Key words: Codiaeum variegatum, Giardia lamblia, Trichomonas vaginalis.

INTRODUCTION

Background

Giardia lamblia (also known as Giardia intestinalis or Giardia duodenalis) is the most common intestinal parasite of humans identified worldwide (Adam, 2001). This flagellated protozoan parasite frequently Human disease, mediated by damage of the enterocytes, loss of the brush border of the epithelial cells of the intestine, shortening of microvilli and altered epithelial barrier function, comprises acute to aqueous diarrhoea, flatulence, steatorrhea, nausea, abdominal pain, vomiting and, as complications in case of chronic disease, malabsorption and weight loss (Vivancos et al., 2018; Loderstädt and Frickmann, 2021). Despite the fact that giardiasis has a global distribution, higher infection rates (20-60%) have been reported in developing countries, mainly among socially and economically deprived populations. In developed countries, infections rates are lower, and G. lamblia is often involved in numerous outbreaks that have been attributed to an inappropriate water treatment (Carvalho, et al., 2014). G. lamblia was included in the World Health Organization (WHO) Neglected Diseases Initiative in a group of diseases including pathogens that have a common link with poverty (Savioli et al., 2006). Giardiasis is a common cause of diarrhea in nursery and primary school (Thompson, 2000), especially in undernourished individuals which in turn gives rise to nutritional deficiencies leading to growth failure and cognitive impairment.

Trichomonas vaginalis parasitizes the urogenital human tract causing trichomoniasis, the most prevalent non-viral transmitted disease worldwide. sexually beina responsible for 248 million new cases annually (WHO, 2012). After colonization, the parasite causes vaginitis, urethritis, and prostatitis (Petrin et al., 1998). Moreover, Trichomoniasis has been found to be associated with various health complications including pelvic inflammatory disease (PID), significant pregnancy complications, cervical cancer, prostatitis and infertility (Johnston and Dubbink, 2008). Significant pregnancy complications include pre-term labour, low birth weight and premature rupture of membranes (Glehn et al., 2017; Cornelius et al., 2012) Trichomonas vaginalis infection has also been associated with a high risk of acquisition and transmission of human immunodeficiency virus (HIV) (De Waaij et al., 2017) and pelvic inflammatory disease (Cherpes et al., 2006). Importantly, trichomoniaosis acts as a cofactor in human immunodeficiency virus (HIV) transmission and acquisition (Servillo et al., 2001; Van Der Pol et al., 2008). Since several decades, the most

prescribed antigiardial and antitrichomonal drug is metronidazole, a 5-nitroimidazole with curing rates ranging between 80 to 95% (Ali and Nozaki, 2007; Thompson et al., 1993). Despite its efficiency, this treatment had undesirable side effects, and treatment failures are common with evidence of drug resistance (Shwebke et al., 2006; Dunn et al., 2010). Therefore, there is an increasing interest for the development of new antigiardial and antitrichomonal agents that can be effective against these parasites and less harmful to the patients. In this regards, natural products, especially medicinal plants, are known as a potent source of bioactivemolecules. *Codiaeum variegatum*(Euphorbiaceae) is a Cameroonian medicinal plant traditionally use in the treatment of intestinal infections. The leaf aqueous extract of this plant has been identified in our previous studies with a pronounced anti-amoebic activity among fifty-five medicinal plants collected from a survey within traditional healers in the Noun division (West region, Cameroon) (Moundipa et al., 2005). A bioassay-guided fractionation of this aqueous extract was carried out against trophozoites of E. histolytica in an axenic culture, and it was reported that several sub-fractions had significant higher anti-amoebic activity compared to the unfractionated aqueous extract (Mfotie et al., 2014). The anti-amoebic activity of the most potent sub-fraction (SF9B) was confirmed with the morphological characteristics of induced death in trophozoites through the destabilization of Gal/GalNAc lectin, an abundant parasite cell surface protein. Differential gene expression analysis using high-throughput RNA sequencing implies the potential mechanism of its anti-amoebic activity by targeting ceramide, a bioactive lipid involved in disturbance of biochemical processes within the cell membrane including differentiation, proliferation, cell growth arrest and apoptosis (Mfotie et al., 2014). An in vivo study aimed at evaluating the sub-chronic toxicity of this plant showed no significant adverse effect of Codiaeum variegatum with respect to the measured parameters (biochemical markers, weight, etc.) (Mfotie et al .2018). Knowing that the growth of E. histolytica, G. lamblia and T. vaginalis is inhibited by metronidazole, and regarding the mechanism of action of the subfraction SF9B which targets ceramide found in these three parasites, we hypothesized that the leaf aqueous extract of C. variegatum, and its fractions may also have inhibitory effect on G. lamblia and T. vaginalis. Therefore, the present study focused on the evaluation of their in vitro antiparasitic activities against axenic culture of G. lamblia and T. vaginalis.

MATERIAL AND METHODS

Preparation of plant extract and isolation of fractions

Leaves of C. variegatum were harvested, thoroughly

washed with tap water, rinsed with distilled water, dried at room temperature and grinded into fine powder. The powder obtained was used to prepare the aqueous extract and the methanol, ethyl acetate fractions and different sub-fractions (SF9, SF9B, SF9B2) were isolated according to the protocol previously described (Mfotie et al., 2014).

In vitro culture of G. lamblia and T. vaginalis

The strain of G. lamblia (Portland1) and the symptomatic strain of T. vaginalis were cultivated on TYI-S-33 axenic medium (Carvalho et al., 2014). Trophozoites were harvested at the log-phase of growth after 72 hours postinoculation, by chilling the tubes on an ice bath for 10 min. They were collected by centrifugation at 250 g for 15 min at 4°C. Pooled cells were suspended in sterile phosphate buffered saline (PBS; pH 7.2)andthe total number of trophozoites were counted microscopically on with haemocytometer а Neubauercellа counterchamber. The cell number was adjusted with culture medium to prepare an inoculum of 10⁵ parasites/mL.

In vitro antiparasitic assay

Trophozoites of *G. lamblia*, and *T. vaginalis* were incubated separately with different concentrations of *C. variegatum* aqueous extract, fractions and sub-fractions for 24 and 48 hours. Metronidazole (Sigma) was used as the positive control. The viability of trophozoite was examined on a microscope after addition of trypan blue (Sigma-Aldrich) (Bansal et al., 1987). This assay was also confirmed by using the quantitative colorimetric [3-(4,5-dimethilthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT)technique, as described by Ponce-Macotela et al., 2001. The percentages of inhibition were calculated according to the following formula: Inhibition percentage = $[(OD_{control} - OD_{test}) / OD_{control}] \times 100$ where OD is the optical density. The control represents 100% of viable parasites in the culture and the results were compared with the inhibition of metronidazole which is the reference drug against giardiasis and trichomoniaosis. The half maximal inhibitory concentration (IC50) was defined as the concentration of crude extract required to inhibit cell growth by 50%. The criteria used for defining the degree of activity of plant extracts in terms of inhibiting Giardia seemed to vary across tested products. Therefore, the following criteria previously proposed were used to classify the active fractions and sub-fractions: $IC_{50} \le 100$ μ g/mL as highly active; 100 < IC₅₀ ≤ 250 μ g/mL as active, $250 < IC_{50} \le 500 \ \mu g/mL$ as moderately active; $IC_{50} \ge 500$ µg/mL as inactive (Amaral et al., 2006).

Statistical analysis

The effect of tested samples on the viability of *G. lamblia*, and *T. vaginalis* trophozoites, was analyzed by counting data following multiple comparisons using a factorial design layout. Each experiment was carried out in triplicate and data were submitted to the one-way analysis of variance (ANOVA) and the means were compared by Turkey's test. All analyses were conducted in SAS 9.2 for Windows (SAS Institute Inc., Cary, NC) and *p*-values less than 0.05 were considered as statistically significant.

The 50% efficient concentrations (EC_{50}) were calculated from concentration-response curves by using the non-linear regression analysis.

RESULTS

Table 1. Efficient concentrations (IC_{50}) of the aqueous extract and fractions against trophozoites of *G. lambia* and *T. vaginalis* respectively.

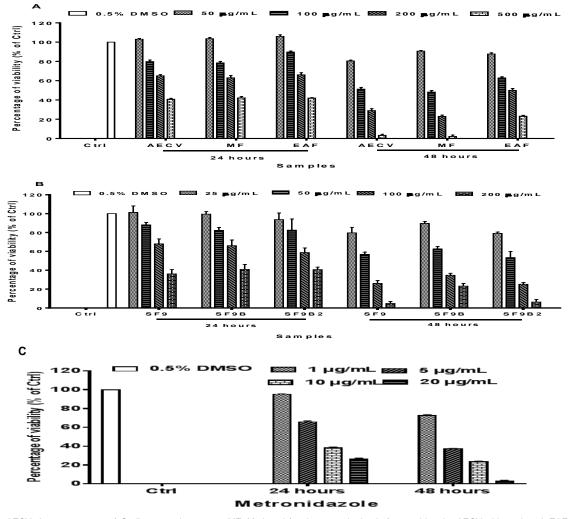
Tested Samples	EC ₅₀ (µg/mL)			
	giardicidal		Antitrichomonal	
	24 hours	48 hours	24 hours	48 hours
AECV MF	135.53 ± 7.79 74.43 ± 5.23	82.19 ± 27.48 33.29 ± 5.99	192.66 ± 4.12 161.25 ± 9.12	118.90 ± 8.20 92.75 ± 3.61 ^a
EAF	194.83 ± 43.85	123.38 ± 40.37	265.75 ± 43.35	180.08 ± 22.45
SF9	50.54 ± 1.66	19.40 ± 2.17	100.70 ± 8.90	56.61 ± 6.17
SF9B SF9B2 MTZ	33.48 ± 2.77 72.47 ± 3.91 8.96±0.02	14.89 ± 1.37 47.83 ± 6.34 2.98±0.46	75.24 ± 13.22 137.36 ± 5.46 7.667±0.799	32.88 ± 6.79 89.35 ± 5.02^{a} 3.205 ± 0.551

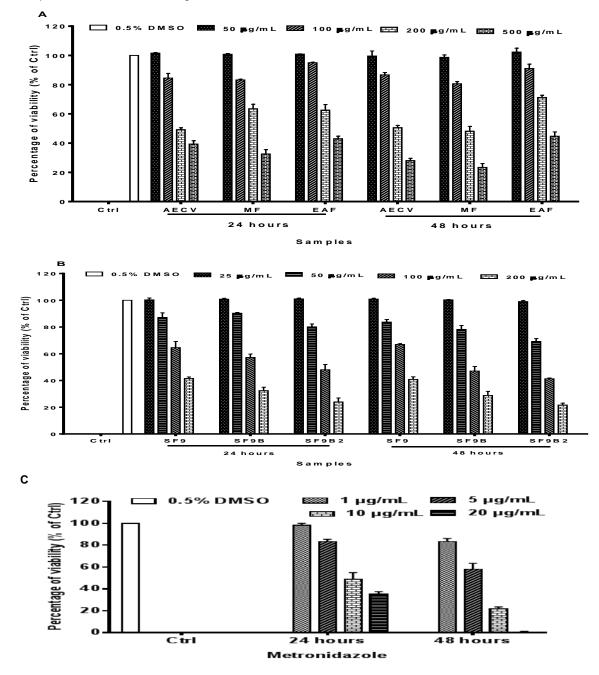
AECV: Aqueous extract of *Codiaeum variegateaum*, MF: Methanol fraction was obtained after washing the AECV with methanol, EAF: Ethylacetate fraction was isolated from MF, SF9 was isolated from silica gel column fractionation of EAF, SF9B is the filtrate obtained from ethanol washing of SF9, and SF9B2 is the white crystal powder precipitated from SF9B, MTZ: Metronidazole. Data were obtained from three experiments and are presented as mean ± standard deviation (SD) compared to the control (DMSO)

Giardicidal activity of leaf aqueous extract of *C. variegatum* and its fractions

on TYI-S-33 culture medium and incubated with different *C. variegateaum* aqueous crude extract, fractions (the methanol, ethyl acetate fractions) and sub-fractions (SF9, SF9B, SF9B2). Metronidazole (MTZ) was used as

The Portland1 strain of G. lamblia was grown axenically




Figure 1: Inhibitory effect of extract, fractions (A), sub-fractions (B) and MTZ (C) after 24 and 48 hours of treatment on trophozoites of *Giardia lambia*.

AECV: Aqueous extract of *Codiaeum variegateaum*, MF: Methanol fraction was obtained after washing the AECV with methanol, EAF: Ethylacetate fraction was isolated from MF, SF9 was isolated from silica gel column fractionation of EAF, SF9B is the filtrate obtained from ethanol washing of SF9, SF9B2 is the white crystal powder precipitated from SF9B, MTZ: Metronidazole. Data were obtained from three experiments and are presented as mean ± standard error of mean (SEM) compared to the control (0.5% DMSO).

reference drug. As result, extract, fractions and subfractions exhibited giardicidal activities in a concentration dependent manner. The period of incubation as well as fractionation process significantly influence *giardia* growth inhibition. In fact, the giardicidal effect increased progressively according to the fractionation step. By plotting the viability rate against concentration, IC_{50} of the extract fractions and sub-fractions were determined (Table 1). Despite the fact that none of them induced total mortality (0% viability) in the performed assay, we did not observe any stationary phase in Giardia parasites growth, (Figure 1).

We noticed the increase of activities with time for all the extract, fractions and sub-fractions. Methanol fraction, and SF9, SF9B, and SF9B2 sub-fractions were highly

active against *G. lamblia*; whereas aqueous extract and ethyl acetate fractions were active after 24h. Among fractions, methanol fraction (MF) with an IC₅₀ of 33.29 ± 5.99µg/mL exhibited the highest giardicidal activity compared to the ethyl acetate fraction (IC₅₀ =123.38 ± 40.37µg/mL) after 48h of incubation. However, the ethyl acetate fraction (EAF) (IC₅₀ =123.38 ± 40.37µg/mL) showed the giardicidal activity not significantly different from that of the aqueous extract (AECV) (IC₅₀ =82.19 ± 27.48 µg/mL) after 48h of incubation. Among fractions and sub-fractions, SF9 and SF9B showed the highest giardicidal activity (IC₅₀ =19.40 ± 2.17µg/mL and IC₅₀ =14.89 ± 1.37µg/mL respectively) after 48 h and remained significantly lower compared to metronidazole (IC₅₀ =2.98±0.46 µg/mL).

Figure 2.Inhibitory effect of extract, fractions (A) and sub-fractions (B) after 24 and 48 hours of treatment on trophozoites of *Trichomonas vaginalis*.

AECV: Aqueous extract of *Codiaeum variegateaum*, MF: Methanol fraction was obtained after washing the AECV with methanol, EAF: Ethylacetate fraction was isolated from MF, SF9 was isolated from silica gel column fractionation of EAF, SF9B is the filtrate obtained from ethanol washing of SF9, SF9B2 is the white crystal powder precipitated from SF9B , MTZ: Metronidazole. Data were obtained from three experiments and are presented as mean ± standard deviation (SD) compared to the control (0.5% DMSO).

Anti-trichomonal activity of *C. variegatum* extract and its fractions

The aqueous extract, fractions and sub-fractions of *C. variegatum* were also tested against the trophozoïtessymptomatic strain of *T. vaginalis*cultivated on TYI-S-33

axenic medium, and metronidazole (MTZ) was used as reference drug. *C. variegateaum* extract and its fractions

showed anti-trichomonal activities which varied in a concentration-dependent manner and also influenced by the incubation time. The percentage of trichomonal viability was plotted against the concentration of tested samples (figure 2) which therefore allowed the determination of IC_{50} of the extract, fractions and sub-fractions (Table 1). All the extracts, fractions and sub-fractions exhibited anti-trichomonial activity. After 24h,

SF9B was highly active; SF9, SF9B2, methanol fraction and aqueous extract were active; ethyl acetate fraction was moderately active. The methanol fraction (MF) exhibited the highest anti-trichomonal activity among fractions with IC₅₀s of 161.25 \pm 9.12 µg/mL and 92.75 \pm 3.61µg/mL after 24h and 48h respectively. However, this activity of MF remains significantly lower than those of SF9 and SF9B sub-fractions with IC₅₀s of 100.70 \pm 8.90 μ g/mL and 75.24 ± 13.22 μ g/mL after 24h; 56.61 ± 6.17µg/mL and 32.88 ± 6.79µg/mL after 48h of incubation respectively). However, no significant difference was observed between the anti-trichomonal activity of the methanol fraction compared to that of the SF9B2 (89.35 ± 5.02µg/mL) after 48h of incubation. Among fractions and sub-fractions of C. variegatum, the ethyl acetate fraction (EAF) exhibited the lowest anti trichomonal activity (265.75 ± 43.35µg/mL after 24h and 180.08 ± 22.45µg/mL after 48h respectively).

DISCUSSION

MTZ has long been used as the standard treatment of protozoan parasitic infections such as E. histolytica, T. vaginalis and G. lamblia. However, new alternative drugs obtained from natural sources are being investigated for the treatment of these infections due to the occurrence of MTZ-protozoan parasites resistant strains in addition to MTZ adverse effects (Gökmen et al., 2019; Rigo et al., 2017; Wassmann et al., 1999; Kapoor et al., 1999). Plant substances are being used as alternative sources for the treatment of various diseases, including parasitic diseases due to their useful therapeutic activities. Accordingly, several studies have been conducted to develop alternative drugs for the treatment of protozoan parasitic infections. Our previous studies intend to valorize the medicinal value of Codiaeum variegatum (var. mollucanum) in the treatment of intestinal amoebiasis. Therefore, the current investigation is realized in order to strengthen the local usage of this medicinal plant in the treatment of other protozoan parasitic infections such as T. vaginalis and G. lamblia infections. Several methods have been used to evaluate the cytotoxicity and viability of cells, including dye exclusion (trypan blue), colorimetric assays (3-[4,5dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT)), fluorometric assays (alamarBlue assay and CFDA-AM assay), and luminometric assays (ATP assays) (Aslantürk et al., 2017). Previous studies have investigated plant extract activity against Giardia and Trichomonas by using dye exclusion and colorimetric assays to count viable cells (De Almeida et al., 2007; Wabo et al., 2011; Harris et al., 2000; Moon et al., 2006). In the present finding, the MTT assay was selected for the detection of viable Giardia and Trichomonas trophozoïtes grown on axenic media exposed to crude extracts, fractions and sub-fractions from C. variegatum. In fact, reduction of tetrazolium salt to formazan indicates

an indirect evaluation of oxidative metabolism within the parasitic cells (Moon et al., 2006). In the present study, the sub-fractions of C. variegatum exhibited highly active antigiadial and antitrichomonal effect in vitro after 48 hours, fractions and aqueous extract showed active antiparasitic effect after 48 hours. Rayan et al., (2015) tested the activity of methanolic and aqueous Terminalia ferdinandiana fruit extracts against G. duodenalis and found the IC₅₀ values of 704 μ g/mL (inactive) and 143 µg/mL (active), respectively which is lower than those recorded in this study.Calzada et al., (2006) tested the in vitro activity of 26 plants against Giardia lamblia and found that Dorsteniacontrajerva, Senna villosa, and Rutachalepensis showed high activity against Giardia with IC_{50} values lower that 38 μ g/mL. Compared with IC_{50} values reported in previous studies, high-to moderate activities of crude extracts, fractions and sub-fractions were observed in this study (Pinong et al., 2020). Furthermore, Persea americana has been reported as the most effective plant on T. vaginalis (Jimenez et al., 2013). In this study, the IC_{50} values of the chloroformic and ethanolic extracts of P. Americana seeds were obtained at concentration of 0.524 and 0.533 µg/ml, respectively, in comparison with IC₅₀ at 0.037 µg/ml for metronidazole (Taran et al., 2006). The effect of Persea americana was significantly stronger than C. variegatum, although the efficacy of Persea americana was evaluated after 72 hours of incubation. The antitrichomonal effect ethanol and alkaloids extracts of H. myrtifolium was investigated, and it was found to be effective in the lysis of T. vaginalis trophozoite at the concentration of 400µg/mL and 150 µg/mL after 48 h respectively (Gökmenet al., 2019). The antitrichomonal activity of C. variegatum extract, fractions, and sub-fractions were higher than those of the H. myrtifolium ethanol extract as well as alkoid extract isolated from the same plant. Phytochemical screening of C. Variegatum extract showed the presence of several secondary metabolites including alkaloids (Ogunwenmo et al., 2007) which are known for their high antiparasitic activity (Gökmenet al., 2019: De Brum et al., 2011: Da silva et al., 2007).

CONCLUSION

The aqueous extract, methanol, fraction, ethyl acetate, sub fraction SF9, SF9B and SF9B2 of *Codiaeum variegatum* exhibited giardicidal and antitrichomonal activities. Although these plant extract, fractions and sub-fractions showed significant activity against *G. lamblia* and *T. vaginalisin vitro*, further *in vivo* studies are required to validate these results before its potential application in humans

Aknowledgement

The authors would like to thank the Department of Science and Technology Government of India for the

funding received throughout the RTF_DCS research training fellowship 2016 enabling them to achieve this finding.

Statement of ethics

This is an *in vitro* study that does not involves human.

Conflict of Interest Statement

The authors have no conflict of interest to declare

Funding Sources

The present finding was funded by the Department of Sciences and Technology of the government of India throughout the RTF_DCS Research training fellowship, and the Ministry of Higher Education of Cameroun throughout the special fund for the modernization of research.

Author Contributions

SN Pechangou, and Kapil Goyal carried out all the *in vitro* experiment reported in this manuscript. SN Pechangou, EM Njoya, FN Njayou, PF Moundipa and R Sehgal designed the study. All authors read and approved the final manuscript.

REFERENCES

- Adam RD. Biology of *Giardia lamblia*. ClinMicrobiol Rev 2001; 14:447-75.
- Ali V, and Nozaki T. "Current therapeutics, their problems, and sulfur-containing-amino-acid metabolism as a novel target against infections by "amitochondriate" protozoan parasites," Clin. Microbiol Rev, 2007; 20: 164–187.
- Amaral FMM, Ribeiro MNS, Barbosa-Filho JM, Reis AS, Nascimento FRF, Macedo RO. Plants and chemical constituents with giardicidal activity. Rev bras farmacogn. 2006; 16:696–720.
- Aslantürk ÖS. In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages. In Genotoxicity-A Predictable Risk to Our Actual World. IntechOpen; 2017. 1–17.
- Bansal SK. Carbohydrate metabolism in the rat peritoneal macrophages. *Journal of Biological Sciences* 1987:12(4), 415-420.
- Calzada F, Yepez-Mulia L, Aguilar A. In vitro susceptibility of Entamoeba histolytica and Giardia lamblia to plants used in Mexican traditional medicine for the treatment of gastrointestinal disorders. J Ethnopharmacol. 2006;108: 367–70.
- Carvalho TB, Oliveira-Sequeira TCG, Guimarães S. In vitroantigiardial activity of the cysteine protease inhibitor E-64 Rev. Inst. Med. Trop. Sao Paulo

56(1):43-47, January-February, 2014 doi: 10.1590/S0036-46652014000100006

- Cherpes TL, Wiesenfeld HC, Melanetal MA."The associations between pelvic inflammatory disease, Trichomonasvaginalis infection, and positive herpes simplex virus type 2serology," Sex. Trans. Dis., 2006:33.12.747–752.
- Cornelius DC, Robinson DA, Muzny CA, et al.Genetic characterization of Trichomonas vaginalis isolates by use of multilocus sequence typing. J ClinMicrobiol. 2012; 50(10):3293–3300.
- Da Silva NNT, Gardner D, Hallwass F, Leite AJM, de Almeida CG, Silva LN, et al. Activity of pyrrolizidine alkaloids against biofilm formation and *Trichomonas vaginalis*. Biomed Pharmacother: 2016: 83: 323-329.
- De Almeida I, Alviano DS, Vieira DP, Alves PB, Blank AF, Lopes AH, et al. Antigiardial activity of Ocimumbasilicum essential oil. Parasitol Res. 2007; 101:443–52.
- De Brum VP, Brandt GR, De Carli GA, Zuanazzi JAS, Tasca T. Screening and bioguided fractionation of amaryllidaceae species with anti-*Trichomonas vaginalis* activity. Planta Med. 2011:77: 1054–1059.
- De Waaij DJ, Dubbink JH, Ouburg S, Peters RPH, Morré SA. Prevalence of Trichomonas vaginalis infection and protozoan load in South African women: A cross-sectional study. BMJ Open. 2017; 7(10):e016959.
- Dunn LA, Burgess AG, Krauer KG, Eckmann L, Vanelle P, Crozet MD, A newgeneration 5-nitroimidazole can induce highly metronidazole-resistant *Giardia lamblia in vitro*.Int J AntimicrobAgents.2010; 36:37-42.
- Glehn MP, Sá LCEF, Da Silva HDF, Machado ER. Prevalence of Trichomonas vaginalis in women of reproductive age at a family health clinic. J Infect Dev Ctries. 2017; 11(3):269–276.
- Gökmen AA, Hüseyin C, Hüsniye K, Bayram P, Selçuk K. In vitro anti-Trichomonas vaginalis activity of Haplophyllummyrtifolium. J. Infect. Dev. Ctries2019; 13(3):240-244. doi:10.3855/jidc.10854
- Harris JC, Plummer S, Turner MP, Lloyd D. The microaerophilic flagellate Giardia intestinalis: Allium sativum (garlic) is an effective antigiardial. Microbiol. 2000; 146:3119–27.
- Hellard ME, Sinclair MI, Hogg GG, Fairley CK. Prevalence of enteric pathogens among community based asymptomatic individuals.JGastroenterolHepatol 2000;15:290-3.
- Jiménez-Arellanes A, Luna-Herrera J, Ruiz-Nicolás R, Cornejo-Garrido J, Tapia A, et al. Antiprotozoal and antimycobacterial activities of *Perseaamericana*seeds. BMC Com-plementAltern Med. 2013; 13:109.

Johnston VJ, Mabey DC. Global epidemiology and control of Trichomonas vaginalis. CurrOpin Infect Dis. 2008;21(1):56–64.

Loderstädt U, Frickmann H. Antimicrobial resistance of the enteric protozoon Giardia duodenalis – A narrative

review Europ. J. o Microbiol. Immunol. 2021: 11; 2/29-43. Mfotie NE, Weber C, Hernandez-Cuevas NA, Hon C-C,

- Janin Y, et al.Bioassay Guided Fractionation of Extracts from Codiaeum variegatum against Entamoeba histolytica Discovers Compounds That Modify Expression of Ceramide Biosynthesis Related Genes. PLoSNegl Trop Dis 2014: 8(1): e2607.
- Moon T, Wilkinson JM, Cavanagh HM. Antiparasitic activity of two Lavandula essential oils against Giardia duodenalis, Trichomonas vaginalis and Hexamitainflata. Parasitol Res. 2006; 99:722–8.
- Ogunwenmo KO, Idowu OA, Innocent C, Esan EB, Oyelana OA. Cultivars of *Codiaeum variegatum* (L.) Blume (Euphorbiaceae) show variability in phytochemical and cytological characteristics. African Journal for Biotechnology. 2007; 6(20):2400-5.
- Petrin D, Delgaty K, Bhatt R, and Garber G, "Clinical and microbiological aspects of Trichomonas vaginalis," Clinical Microbiology Reviews, vol. 11, no. 2, pp. 300– 317, 1998.
- Pintong A1, Jiraporn R, Sumate A, Kanthinich T, et al. Efficacy of Ageratum conyzoides extracts against Giardia duodenalistrophozoites: an experimental study. BMC compl. Med Ther. 2020: 20-2860-6
- Ponce-Macotela M, Rufino-González Y, de la Mora-de la Mora JI, González-Maciel A, ReynosoRobles R, Martínez-Gordillo MN. Mortality and morphological changes in *Giardia duodenalis*induced by exposure to ethanolic extracts of *Justiciaspicigera*. Proc West Pharmacol Soc. 2001; 44:151-2.
- Rayan P, Matthews B, McDonnell PA, Cock IE. Terminalia ferdinandiana extracts as inhibitors of Giardia duodenalis proliferation: a new treatment for giardiasis. Parasitol Res. 2015; 114:2611–20.

- Savioli L, Smith H, Thompson A.*Giardia* and *Cryptosporidium* join the 'Neglected Diseases Initiative'. Trends Parasitol. 2006; 22:203-8.
- Schwebkeand JR, Barrientes FJ, "Prevalenceof Trichomonas vaginalis isolates with resistance to metronidazole and tinidazole," Antimicrobial Agents and Chemotherapy, vol. 50, no. 12, pp. 4209–4210, 2006.
- Sorvillo F, Smith L, Kerndt P, and Ash L, "Trichomonas vaginalis, HIV, and African-Americans," Emerging Infectious Diseases, vol.7, no.6, pp.927–932, 2001.
- Taran M, Rezaeian M, Izaddoost M. In vitro antitrichomonas activity of Allium hirtifolium(Persian Shallot) in comparison with metroni-dazole. Iran J Public Health. 2006; 35(1):92-Thompson RC. Giardiasis as a re-emerging infectious disease and its zoonotic potential. Int J Parasitol. 2000; 30:1259-67.
- VanderPol B, Kwok C, Pierre-LouisetalB, "Trichomonas vaginalis infection and human immunodeficiency virus acquisition in African women," Journal of Infectious Diseases, vol.197, nno. 4, pp. 548–554, 2008.
- Vivancos V, Gonz_Alez-Alvarez I, Bermejo M, Gonzalez-Alvarez M. Giardiasis: characteristics, pathogenesis and new insights about treatment. Curr Top Med Chem 2018; 18:1287–303.
- WaboPoné J, FossiTankoua O, Yondo J, Komtangi MC, Mbida M, BilongBilong CF. The in vitro effects of aqueous and ethanolic extracts of the leaves of Ageratum conyzoides (Asteraceae) on three life cycle stages of the parasitic nematode Heligmosomoides bakeri (Nematoda: Heligmosomatidae). Vet Med Int. 2011..
- WHO, Global Incidence and Prevalence of Selected Curable Sexually Transmitted Infections-2008, World Health Organization, Geneva, Switzerland, 2012, http://apps.who.int/iris/bitstream/10665/75181/1/978924 1503839 eng.pdf.