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To solve the unfixed grasping tasks during the fruits picking and rating, grasping modeling is researched as the most
important part of the robot hand solutions. A survey for grasping synthesis method with dexterous robot hand is
presented in this paper. The difference of grasping characters is introduced between dexterous hand and underactuated
hand. Especially, the feature of self-adaptive enveloping grasp achieved by underactuated finger mechanism is outlined,
which has good performance in grasping unknown objects. In order to generate valid grasps for unknown target objects
and apply in real-time control system for underactuated robot hand, a grasping strategy synthesis model for universal
grasp tasks is proposed based on human knowledge analysis. It is composed by off-line neural networks training section
and on-line compute section. Firstly, daily grasped objects are used to build a sample space by human experience. Then
the discrete sample space is computed by fuzzy clustering method. The data is used to generate grasp decision scheme
by rough set mixed artificial neural networks. An examination is simulated for grasp configurations choice of the
underactuated robot hand with the aim to show the practical feasibility of the proposed grasp strategy.
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INTRODUCTION

China possesses the whole world’s 21% fruit growing
area, and with a total output of more than 180 million tons,
but the fruit-picking mainly rely on human powers, since
there’s not any appropriate machinery in the market. The
main reasons for the absence of the appropriate
machinery in the market, is due to the technology
requirements in fruit-picking process is very high,
especially the grasping robot should be reliable and will
not damage fruit. With the more and more prominent
problems of labor costs rising and labor shortages, it’s
extremely imperative to adapt machinery in fruit-picking.
and characteristics of a variety of fruits and vegetables
picking robot’s end-effectors, which put forward that under
actuated multi-fingered hand is an ideal fruit and vegetable
picking robot’s general-purposed end-effectors; One of
the most important part is to solve the robot hand’s
grasping problem, at the same time the robot
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hand can also be used for picking fruit of different shape,
and the after process treatment such fruit grading in
different picking tasks. Targeting fruit grasping problem,
Song et al. (2006) introduces the study result of some
typical picking robot both in domestic and oversea, which
indicate that the studying of picking robot not only has
great practical value, but also has profound theoretical
significance; Li et al. (2008) analyzes the studying
statusand characteristics of a variety of fruits and
vegetables picking robot’s end-effectors, which put forward
that under actuated multi-fingered hand is an ideal fruit
and vegetable picking robot’s general-purposed end-
effectors; Cai et al. (2009) targets the real time path
planning problem of citrus picking robot in dynamic and
unstructured environment, make use of the BL-PRM
algorithm, have simulated test of citrus picking under both
the condition of picking exposed and overlapped fruits;
Yang et al. (2010) designs an apple picking’s end-
effectors, based on the flexible pneumatic actuator, which
can grasp and hold well the apples with good flexibility;
Yuan et al. (2009) transfers the apple-picking path’s



planning problem into three dimensional “travel salesman
problem”, combined the apple position characteristics
obtained through image processing, put forward the
improved ant colony algorithm based on the adaptive
update pheromone of finite field. The core issue is grasp
programming.
As multi-fingered robotic dexterous hand has been

proposed since 70s last century, the design, analysis and
control of such hands has become an active area of
research. Many studies focus on the issues of strategy
and planning for target objects grasp. It refers to some
aspects such as grasping mode choice, grasping position
planning for fingers and palm, contacting point selection,
kinematic and torque computation for each joint, operation
and stability. Researching works are undertaken from
different views in order to analysis grasp planning and
establish grasp strategy models. Geometry method is an
initial solution to build grasp strategy model which is based
on the theory of form-closure and force-closure. Nguyen
(1988) presented a simple algorithm for directly
constructing force-closure grasps based on the shape of
the grasped object. An efficient algorithm for
synthesizing grasp is reported for bounded
polyhedral/polygonal objects (Mishra et al., 1987). Ponce
and Sullivan (1997) addressed the problem of computing
stable grasps of three-dimensional polyhedral objects. An
algorithm for computing all placements of frictionless
grasping point fingers is proposed (Stappen et al., 2000).
The algorithm translated grasping problem into geometric
searching problems. Thus, the solving process may be
complex and mass computation.
A sufficient and necessary condition to achieve form-

closure grasp is demonstrated for multi-fingered robot
hand (Liu et al., 1999). An improved approach is reported
by using a ray-shooting algorithm to test force-closure for
3D frictional grasp (Zheng and Qian, 2005). Optimum
function is also used for grasp synthesis analysis for multi-
fingered robot hand. First of all, there should be an
evaluation function as the optimal criterion. The function is
translated from some grasping capability items such as
manipulating space, grasp forces and torque, grasp
stability. The results for grasping parameter can be
calculated when optimum criterion reach the maximum or
minimum solution. A task-oriented quality measure is
proposed for evaluating grasp by computing the minimum
singular value for the grasping matrix (Li and Sastry,
1988). Stable grip and form-closure optimum problem is
formulated and solved (Markenscoff and Papadimitriou,
1989). A unit contact forces for multi-finger grasp is
researched (Kirkpatrick et al., 1992). An optimality criterion
based on decoupled wrenches is presented (Mirtich and
Canny, 1994), in which the algorithms for achieving force-
closure grasps of 2-D and 3-D objects are developed. Two
general optimality criteria that consider the total finger
force and the maximum finger force are introduced and
discussed (Ferrari and Canny, 1992). An approach is
reported to quantify the effectiveness of
compliant grasps and fixtures of an object; a stiffness

quality measure is defined and used as an optimal criterion
(Lin, 2000).
A general algorithm, which is composed by two

computing phases is presented (Zheng and Qian, 2005)
for optimum dynamic force distribution in multi-fingered
grasping. The considerations based on optimum function
for grasp synthesis are focused on optimum evaluation.
However, it is complex to provide a formulation and
quantification evaluation function in a multi-contact grasp
system. In addition, the optimality iterative process also
needs mass computation to converge, thus it is difficult to
apply in a real time control system. In fact, the target
objects are multivariable depending on different shapes,
grasping tasks and environment. It is complicated to
translate and formulate a mathematical model by physical
analyzing. Thus the hand system usually can not be
programmed for universal grasp tasks before grasping
operation. In this paper, a new grasp planning analysis
based on human knowledge is proposed for modeling
grasp strategy for underactuated multi-fingered robot
hand. The underactuated finger mechanism is able to
perform a human-like grasping operation and it has ability
of passive compliance self-adaptation to grasp objects of
a large variety in size and shape. In particular, the
proposed grasp strategy model is built by rough set mixed
artificial neural networks.
The specific characters of the grasp strategy model are

rapid calculation speed and high accuracy rate in grasp
choice taxonomy and can be used for universal grasp
tasks.

GRASP STRATEGYBASEDONHUMANKNOWLEDGE

A human hand can grasp one target object with different
types of configurations. That would lead to different
grasping stability and dexterity. The rule of grasp
configuration choice for a human is daily experience or
intelligence consideration before grasp action. For
example, a human hand can use two or three finger tips to
pinch a hammer handle, but it is easy to slide off. However,
it will be stable if the whole hand fingers and palm envelope
it together. Thus, it can be concluded that human
experience and artificial intelligence is the basic for a robot
hand grasp planning and grasp strategy modeling based
on human knowledge. The grasp strategy based on
human knowledge for multi-fingered robot hand grasp
synthesis is developed in recent years. Some simplification
and assumptions is proposed (Cutkosky, 1989), which are
applied in manufacturing environment for robotic hands
grasp tasks. A knowledge-based approach for robotic
hand grasping unknown objects is described (Stansfield,
1991). A compact set of heuristics expert system is used
to generate valid grasps for the unknown objects with a
desired configuration. The issue of developing grasping
controller composed by a knowledge framework and a
pre-imaging system is
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Figure 1. Three kinds of finger mechanisms for underactuated robot hand.

discussed (Coelho and Grupen, 1994).
A grasp synthesis algorithm is introduced (Pollard,

1996). The expert system can generalize application
instances by many prepared grasp prototypes. A grasp
strategy can be generated for a specific grasp task. The
relationship among grasp task, object geometry and grasp
choice are analyzed and reported (Cutkosky and Wright,
1986). In retrospect, a grasping strategy synthesis model
is used to establish the relationship between target objects
and grasp configuration choice. The grasp synthesis
based on human knowledge can be carried out when a
target object’s characteristics of shape and grasp task is
known. It would be applied in a real-time control system
with three necessary characters:

a) Robot hands can achieve some stable grasp
configurations.
b) The experiences of human knowledge can be studied
as an artificial intelligence to build a grasp strategy
synthesis model.
c) The grasp strategy synthesis model has the character
of rapid calculation speed.

GRASP TAXONOMY FOR UNDERACTUATED MULTI-
FINGERED ROBOT HAND

A dexterous robot hand has the same number with
actuators and DOFs (degree of freedoms). The torque or
rotation motion of each joint can be controlled.
Underactuated finger mechanism is designed with a
reduced number of DOFs and actuators. It can be built
with low-cost and easy-operation features for applications

in robot hand. In addition, an underactuated finger
mechanism in robot hand can perform stable grasps by
using enveloped configuration. Ceccarelli et al. (2006) has
presented design considerations and structure scheme of
finger mechanism for underactuated grasp. Some linkage
underactuated finger mechanisms are proposed (Yao et
al., 2008) as shown in Figure 1. The design problems and
grasp simulation was undertaken (Yao et al., 2008) for
these mechanisms. It can be shown from the grasp
simulation that the proposed underactuated robot finger
mechanisms have the features of self-adaptive and
enveloping grasp with different shapes and size objects,
in spite of the objects’ characters are uncertain and
complicated to describe in formulation, as shown in Figure
2.
The joint motion limitation can be designed in each

phalanx. The finger mechanisms can transmit torque from
the finger root when the joints reach limit position. It is
used to ensure the pinch operation with the finger tips.
Thus, underactuated robot finger mechanisms can be put
into practice as an approach to due with the unknown
universal grasps tasks. As shown in Figure 2, fingers 1
and 2 are symmetrically assembled in the palm, a straight-
teeth gear system is located under the palm. Finger 3 is
thumb, whose position is fixed. The position of fingers 1
and 2 can be changed within a circular track around the
palm central. The prototype of the proposed underactuated
multi-fingered robot hand is shown in Figure 4. The hand
system is composed by three fingers. It can be concluded
from Figures 3 and 4 that the proposed hand system has
three possible working positions to achieve different grasp
configurations, which are listed and explained.



Figure 2. Grasp simulation of underactuated robot finger with the
mechanism in Figure 1a.

Figure 3. Gear system for finger positions adjusting in palm.

Position 1

Fingers 2 and 3 opposite with finger 1, as shown in
Figure 4a.

Position 2

Three fingers centripetal, as shown in Figure 4b.

Position 3

Fingers 2 and 3 parallel, finger 1 is free, as shown in
Figure 4c.

Position 4

Three fingers parallel in one side, as shown in Figure 4d.
Thus, there are six grasp configurations which are
described in Figure 5. The types of the grasp
configurations are associated with the common situations
for human grasp tasks in daily life. They can be explained
in details as:

Configuration 1

Three finger parallel pinch, shown in Figure 5a. Fingers 2
and 3 are parallel and finger 1 located on the other side



Figure 4. The proposed hand prototype with different finger positions: a) Fingers 2 and 3
opposite with finger 1; b) three fingers centripetal; c) fingers 2 and 3 parallel, finger 1 is free;
d) three fingers parallel in one side.

Figure 5. Grasp configurations: a) three fingers parallel pinch; b) three fingers cylindrical
envelop; c) three fingers centripetal pinch; e) three fingers centripetal envelop; e) two fingers
parallel pinch; f) three fingers parallel pull.

of the target object. Finger tips are used to pinch small
long objects. This configuration is derived from position 1.
For example, pinch pencil to write.

Configuration 2

Three fingers parallel envelop, shown as Figure 5b).
Fingers 2 and 3 are parallel and finger 1 located on the
other side to envelop big cylinder objects, while finger
phalanxes are all contact with object. This configuration is
also derived from position 1. For example, envelop grasp
a bottle of beer.

Configuration 3

Three fingers centripetal pinch, shown in Figure 5c.
Fingers 1, 2 and 3 are located central symmetric on the
palm. Three finger tips are used to pinch small spherical
objects or small regular polyhedron objects. This
configuration is derived from position 2. For example,
grasp a golf ball.

Configuration 4

Three fingers centripetal envelop, as shown in Figure 5d.

Fingers 1, 2 and 3 are located central symmetric on the
palm to envelop some spherical objects while finger
phalanxes are all contact with object. This configuration is
also derived from position 2. For example, grasp an apple.

Configuration 5

Two fingers centripetal pinch, shown as Figure 5e).
Fingers 2 and 3 pinch very small object and finger 1 is
free. This configuration is derived from position 3. For
example, grasp a pill or a coin.

Configuration 6

Three fingers parallel pull in one side, shown as Figure
5f). Three fingers are parallel at the same side of the
object. Finger tips are used to pull small long objects. This
configuration is derived from position 4. For example, pull
handles to open a door. The purpose of taxonomy for the
grasp configurations is used to describe the grasp choice
for grasp planning and the strategy modeling. The
relationship between grasp choice and target objects
character on shape and size will be built based on the
taxonomy. It should be clarified that the grasp
configurations taxonomy in this paper is applied for



Figure 6. Gras strategy modeling for different tasks.

the proposed underactuated multi-fingered robot hand.
Because the grasp configuration is decided by the finger
position and the underactuated finger mechanism as
designed.

GRASP PLANNING MODELING BASED ON
ARTIFICIAL NEURAL NETWORKS

Modeling algorithm with human grasp knowledge

A real human hand can grasp a wide range of objects
stably because of its experience and skill in adapting
object shape and size. Intelligence human hand can
consider their experience to generate a suitable grasp
strategy according to the objects, environment and tasks.
Three algorithms for model grasp strategy have been
mentioned (Zhang et al., 2007). They are Gaussian
mixture model, support vector machine and artificial neural
networks, respectively. The advantages and weaknesses
of these modeling algorithms have also been discussed.
Rough set theory was firstly presented by Skowron and
Rauszer (1982), and can be applied for information
processing. It has been proven that rough set theory is an
effective approach to analyze imprecise, confused or
fragmented data sets. Thus, rough set is considered as a
mathematical method for data reasoning, which can be
used in the field of knowledge acquisition, decision
analysis, forecasting, expert systems, probability
estimation and knowledge discovery. Because the
complemented relative between rough set theory and
other mathematical method such as artificial neural
networks or fuzzy theory. It has possibility to mix the rough
set theory with artificial neural networks or fuzzy set theory
and generate a new analysis algorithm artificial neural
networks algorithm is provided in this paper to solve the
uncertainty decision analysis for grasp strategy

modeling of the underactuated robot hand. The grasp
strategy modeling can be easily described as Figure 6.
The grasp strategy modeling procedure is shown in

Figure 7. It is composed by three sections, which are data
preprocess section, rough set mixed artificial neural
networks section and motor control section, respectively.
The first section of the modeling procedure is to describe
and classify objects into different types by taxonomy. The
proposed rough set method is applied to process attribute
parameters for objects. First of all, some shape and size
characteristics of the sample objects should be obtained.
Then the attributes concerned with obtained size and
shapes characteristics is extracted from the sample
objects. Then, the extracted attribute parameters are
classified into different types and each type of the object
has the similar shape and size. Fuzzy clustering method
(FCM) is used as a taxonomy which can class assignment
continuous data by their features. The second section of
the modeling procedure is to train grasp strategy networks
off-line and generate grasp strategy networks on-line.
Each type of objects classified in section one represents
a kind of object which corresponds to a grasp strategy.
The grasp strategy decision scheme for all types of sample
objects can be built by considering human experience and
knowledge. The generated scheme will be used for
artificial neural networks training. However, the scheme
contains the whole characteristics of the sample objects,
the mass data will result the neural networks become
complicated and low efficiency. Thus, there should be a
simplification calculation by using rough set analysis
method to get a brief grasp strategy scheme. Then the
simplified scheme can be trained by off-line neural
networks.
In this paper three neural networks are proposed with

the aim to show training effect. They are PB neural
networks, RBF neural networks and possibility neural
(Walczak and Massart, 1999). Thus, a rough set mixed
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Figure 7. A flowchart for the proposed grasp strategy modeling procedure.

networks, respectively. When a grasp task is ordered, the
attributes will be extracted from target object and
computed as independent variable for the on-line neural
networks. Then a grasp strategy will generate to predicate
the grasp configuration for the target object in a real-
control system. The function of last section is to

control and actuate motors in the hand system. The three
fingers will be adjusted into appropriate positions at first
after a grasp configuration generated. Then the motors
actuate finger mechanisms to grasp object and complete
the grasp task. If the task can not be finished, the system
will extract attribute parameters again from the target



object and generate a new grasp strategy.

Objects description and data preprocess

A space which contains a large number of target objects
is built and defined as objects space. The objects space is
composed by 251 common instances in daily grasp task
for human life, and can be denoted as U, and each of the
object instance can be defined as ui (I = 1,…251). The
attribute parameters of the sample objects are extracted
from five aspects which composed an attribute parameters
space. These characteristics will decide the grasp strategy
and can be obtained by robot vision recognition system. It
also can be obtained by other methods, but we only focus
on the issue of grasp strategy modeling in this paper. The
five attribute parameters are concerned with size, shape,
weight, volume, revolving body and surrounding space.
Thus, an attribute space can be defined as A, it includes
five attribute parameters for the 251 common instances,
which can be expressed as ai (I = 1,…5). First of all, each
instance Ui was approximately described as a cube. The
cube is decided by three parameters which are length,
width and height. Thus, the five attribute parameters can
be described as:

i) a1: The three dimension features of the approximate
cube;
ii) a2: The weight of the sample objects;
iii) a3: The volume of the sample objects;
iv) a4: If the sample objects have rotative surface or not;
v) a5: If the sample objects have enough surrounding
space or not.

Because a1, a2 and a3 are continuous data which can not
be processed in the rough set mixed neural networks.
There should be a preprocess operation to divide them
into different types by their features. Thus, a fuzzy
clustering method is used for classification assignment.
Fuzzy clustering method is used to classify a1 into three
types by considering the three dimension variables, a2
and a3 are also classified in the same way into three types,
respectively. The parameters of a4 and a5 are
discontinuous data which will show the possibility for
envelop grasp or pull. Thus, these classified attribute
parameters can be transformed into digital format and
described as:

i) a1: (0, 1, 2) to express (slender, medium and flat)
attribute for an object according to three dimensions.
ii) a2: (0, 1, 2) to express (heavy, medium and light)
attribute for an object according to weight;
iii) a3: (0, 1, 2) to express (large, medium and small)
attribute for an object according to volume;
iv) a4: (0, 1) to express (non-rotative and rotative)
attribute for an object according to its body surface;
v) a5: (0, 1) to express (without and with) surrounding

space for an object. For example, an object located in
corner usually has no surrounding space.

Generate and simplify grasp strategy decision scheme

There should be a grasp decision space which can
describe final grasp configurations in the strategy modeling
algorithm. Grasp decision space can be denoted as D.
Because the proposed robot hand has six grasp
configurations, the grasp decision space contains six
parameters which are defined as di (I = 1,…6). In order to
compute in the rough set mixed neural networks, each of
the decision should be converted into digital format as:

i) d1 = 1: Three finger parallel pinch;
ii) d2 = 2: Three fingers parallel envelop;
iii) d3 = 3: Three fingers centripetal pinch;
iv) d4 = 4: Three fingers centripetal envelop;
v) d5 = 5: Two fingers centripetal pinch;
vi) d6 = 6: Three fingers parallel pull.

Then the objects space U is separated into two parts which
are U1 and U2. U1 contains 200 sample objects,
U1= (u1,…u200) which is used for neural networks training
and to generate grasp decision scheme; U2 contains the
other 51 sample objects of the objects space U, U2=
(u201,…u251) which is used for the grasp strategy
examination with the neural networks. The grasp decision
scheme for 200 sample objects ui (I = 1,…200) can be
built by considering human experience and knowledge,
each of them contains 6 attribute parameters ai (1 = 1,…6)
and a decision parameter di. Because of the mass of data,
the neural networks will be complicated and the calculation
efficiency will be reduced. Thus, redundant samples which
have the same attribute parameters and grasp decision
should be combined and can be considered as a type of
target object. The simplified decision scheme is composed
by 34 types of samples (u1,…,u34) which include most
common objects in daily life and is listed in Table 1.
The obtained simplified grasp decision scheme in Table 1

can be far-simplified with the aim to delete the redundant
attribute parameters according to the rough set theory. Thus,
an algorithm is proposed which can keep each grasp strategy
independent by searching and removing some redundant
attribute parameters. The brief grasp decision scheme is
listed in Table 2, in which the minimum form of the attribute
space is obtained as (a1, a2, a3, a5) and the redundant
attribute parameter a4 has been removed. Comparing with
Table 1, the sample attribute parameters in far-simplified
decision scheme are less than before, but the strategy
decisions are not affected. Some of the redundant strategies
are combined, such as (u4, u28), (u6, u26), (u7, u10, u22), (u13,
u25) and (u15,



Table 1. Simplified grasp strategy decision scheme.

Samples (ui)
Attribute parameter Decision (di)a1 a2 a3 a4 a5

1 0 1 2 1 0 4
2 0 0 0 0 0 1
3 0 1 1 0 0 3
4 1 1 0 0 0 2
5 1 2 0 1 0 5
6 0 2 0 1 0 4
7 2 0 2 1 1 4
8 1 0 2 0 1 1
9 0 0 2 0 0 3
10 2 1 2 0 0 4
11 0 0 1 0 0 1
12 2 1 0 0 0 4
13 1 2 1 0 0 5
14 0 0 2 0 1 3
15 1 1 0 1 0 2
16 1 0 1 0 0 1
17 0 1 0 0 0 3
18 0 1 2 0 1 4
19 0 2 2 0 0 4
20 1 2 2 1 0 5
21 2 0 1 0 1 6
22 1 2 0 1 1 5
23 0 2 0 0 0 4
24 2 2 1 0 0 4
25 0 0 1 0 1 6
26 0 1 1 1 0 3
27 1 0 0 0 0 1
28 0 1 0 0 0 3
29 1 1 1 0 0 5
30 2 0 1 0 0 3
31 2 0 0 0 1 6
32 1 0 1 0 1 1
33 1 0 1 0 0 1
34 0 2 1 0 0 4

u17). Table 2 is much brief and suitable for neural networks
training.

Neural networks training and examination

The obtained far-simplified grasp strategy scheme can be
used for artificial neural networks training. In this paper,
three neural networks methods are presented which are
BP neural networks, RBF neural networks and possibility
neural networks, respectively. The model of BP networks
is 3-layer feed forward neural network. Hidden layer is

composed by 7 neurons and hyperbolic tangent function.
Conjugate gradient algorithm is applied for networks
training. The function in RBF neural networks is designed
by using Gaussian function and the neurons can be added
automatically by considering the mean-squared error of
the networks’ output. The training work will be finished
until the output error meets requirement. Possibility neural
networks were appropriate method applied in taxonomy
as reported in 0. It has the feature of fast calculate speed
and better generalization performance. Thus, it can be
used as a method for the grasp strategy modeling. The
far-simplified grasp strategy



Table 2. Far-simplified grasp strategy decision scheme.

Samples (ui)
Attribute parameter Decision (di)a1 a2 a3 a5

1 0 1 2 0 4
2 0 0 0 0 1

3, 26 0 1 1 0 3
4, 15 1 1 0 0 2
5 1 2 0 0 5

6, 23 0 2 0 0 4
7 2 0 2 1 4
8 1 0 2 1 1
9 0 0 2 0 3
10 2 1 2 0 4
11 0 0 1 0 1
12 2 1 0 0 4
13 1 2 1 0 5
14 0 0 2 1 3

16, 32, 33 1 0 1 1 1
17, 28 0 1 0 0 3
18 0 1 2 1 4
19 0 2 2 0 4
20 1 2 2 0 5
21 2 0 1 1 6
22 1 2 0 1 5
24 2 2 1 0 4
25 0 0 1 1 6
27 1 0 0 0 1
29 1 1 1 0 5
30 2 0 1 0 3
31 2 0 0 1 6
34 0 2 1 0 4
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Figure 8. Computational results comparison of the three rough
set mixed artificial neural networks.

decision listed in Table 2 is used as sample for the rough
set mixed neural networks training. Then, the attribute
parameters in the other object space U2 can be extracted.
The compute results used for examination of the proposed
algorithm by comparing with the grasp strategy decision
scheme in Table 2. The computation result of the three
rough set mixed neural networks is illustrated in Figure 8
and Table 3.
As shown in Figure 8 the proposed grasp strategy

modeling based on three types of rough set mixed neural
networks have a good computation results, the accuracy
rate are all higher than 84%. Especially the modeling
based on rough set mixed possibility neural networks,
which perform the highest computational accuracy rate
at92.1%. The BP networks and RBF networks need to set
the study parameters for training but the parameters
setting is confused and should be attempted from
engineering point. The possibility neural networks can
acquire high accuracy rate and direct expression, while



Table 3. Results of grasp strategy based on rough set mixed neural networks (number in colored background means a fail compute
result).

Object space (U2)
Attribute parameter Decision (di)

Results of rough set mixed networks
a1 a2 a3 a5 BP RBF PNN

201 2 0 2 1 4 3.9982 4 4
202 2 0 1 0 3 3.0025 3 3
203 0 1 1 0 3 2.9416 3 3
204 0 1 1 0 4 3.9416 4 4
205 2 1 0 0 4 3.995 4 4
206 1 0 2 1 1 1.0096 1 1
207 1 2 0 0 5 5.285 5 5
208 2 1 0 1 4 1.3385 2.8464 4
209 2 2 0 1 4 2.3588 4.0768 4
210 1 2 0 1 5 5.0096 5 5
211 1 1 1 0 5 4.3467 5 5
212 2 0 1 1 6 6.0036 6 6
213 1 0 1 1 1 0.9973 1 1
214 2 1 1 0 5 5.2134 4.7967 4
215 0 0 0 1 6 6.3847 5.9909 6
216 2 1 2 0 4 4.0014 4 4
217 0 0 1 0 1 1.3245 1 1
218 0 0 0 0 1 1.0134 1 1
219 1 0 0 0 1 1.0069 1 1
220 1 2 0 1 5 5.0096 5 5
221 0 2 1 0 4 4.0327 4 4
222 0 0 1 1 6 5.9951 6 6
223 2 2 1 0 4 4.2964 4 4
224 1 1 0 0 2 2.0021 2 2
225 2 0 0 1 6 5.9926 6 6
226 1 1 1 1 5 2.7281 3.192 5
227 0 0 1 0 1 1.3245 1 1
228 0 0 2 0 3 3.0316 3 3
229 0 1 2 0 4 3.8872 4 4
230 2 0 0 1 6 5.9926 6 6
231 2 0 1 1 6 6.0036 6 6
232 0 0 2 1 3 3.0044 3 3
233 0 1 2 1 4 3.8875 4 4
234 1 1 0 1 2 0.9496 2.5323 5
235 0 2 0 0 4 4.0307 4 4
236 1 1 0 0 2 2.0021 2 2
237 0 1 1 1 4 3.8344 3.0619 4
238 1 2 2 0 5 4.9934 5 5
239 2 0 1 0 3 3.0025 3 3
240 0 0 0 0 1 1.0134 1 1
241 1 2 1 0 5 5.3594 5 5
242 1 0 1 1 1 0.9973 1 1
243 2 1 0 0 4 3.995 4 4
244 0 1 0 0 3 2.6547 3 3
245 0 1 0 1 6 4.1483 2.931 3
246 0 2 2 0 4 3.8978 4 4
247 2 2 0 0 4 2.7543 4.6469 4
248 0 2 0 1 4 5.2734 3.8458 5
249 0 2 1 1 4 3.9017 3.681 4



Table 3. Contd.

250 0 0 1 0 1 1.3245 1 1
251 1 0 0 0 1 1.0069 1 1

only trained one time. Thus, rough set mixed artificial
neural networks can be used as a suitable algorithm for
grasp strategy modeling. It should be indicated that the
proposed rough set method simplified the grasp strategy
decision scheme which lead to a brief structure of
networks. However, it does not mean that the omitted
attribute parameter is not considered in the modeling
process. It takes no effect for the strategy modeling
because the omitted attribute parameter is redundant in
the scheme. The underactuated finger mechanism robot
hand performs preferable feature for passive compliance
to envelop grasp behavior. The three fingered hand can
grasp different object with the mentioned grasp
configurations by suitable grasp strategy planning.

CONCLUSIONS

In order to solve the grasp programming problem of robot
hands during the fruit picking and grading process, the
following study has been made. In this paper, the methods
of grasp synthesis planning are summarized. A multi-
fingered robot hand with underactuated mechanism is
presented, which has the feature of self-adaptive
enveloping grasp and can be used for uncertainty tasks to
grasp unknown object. A grasp strategy modeling method
is proposed with the purpose of applying in real-time
control system. The modeling algorithm is based on human
experience and knowledge by using rough set mixed
neural networks. A case of examination shows the
accuracy rate grasp strategy model are higher than 84%.
Especially the algorithm based on rough set mixed
possibility neural networks takes accuracy rate at 90.2%,
which shows the practical feasibility of the proposed grasp
strategy modeling method.
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