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Selected biomakers, Cholinesterase (ChE) and phagocytic activities have been investigated with the 
exposed green mussel PERNA VIRIDIS in Indonesian coastal waters. An operative effect-based monitoring 
on two polluted sites and one reference area were investigated for aquaculture enterprises and human 
health aspects. Between two heavily polluted sites, green mussels from Cilincing indicated a lower level 
of the ChE activity than those from Kamal Muara. The phagocytic activity of green mussels from the 
polluted sites demonstrated significant higher activity than that of green mussels from the pristine site, 
Pangkep. However, there were no significant differences of phagocytic activities between the polluted 
sites. This might indicate that the existing pollutants in Jakarta Bay were more neurotoxic rather than 
immonotoxic substances. The results showed clearly that both selected biomarkers were potential 
valuable tools for effect-based monitoring and pollution impacts in coastal zones of Indonesia. 
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INTRODUCTION 

 
A biological approach has been used as a counterpart of a 
classic chemical approach for surveying marine pollution 
effects in many international programs (Cajaraville et al., 
2000; Devier et al., 2005; Lehtonen et al., 2006; Orbea et 
al., 2006; Minier et al., 2006). A chemical analysis solely is 
considered as an invaluable analysis for interpretation of the 
pollutant impact in marine ecosystem since it does not 
illustrate the harmful effects (Walker, 1998; Damiens et al., 
2004) and the fate of chemical compounds on living 
organism through biotransformation of xenobiotic 
substances within living organism body (Nicholson and Lam, 
2005). In many cases, the biotransformation may increase 
xenobiotic substances toxicity on organism via producing 
reactive metabolite compounds that are more toxic than 
original  
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parent compounds (Belden and Lydy, 2000). Moreover, the 
chemical approach is costly, usable to only a small 
proportion of the xenobiotic compounds in the environment, 
produces a little biologically meaningful data, and 
consequently simplifies the complexity of the ecosystem 
under monitoring (Butterworth, 1995). For those reasons, the 
classic chemical analysis should be accompanied by the 
biological approach which is so called “biomarker” that 
elucidates biological responses of environmental pollution.  

Biomarkers have been considered as sensitive and 
suitable tools for detecting either exposure, or effects of, 
pollutants (Hansen, 1995; Narbonne et al., 2001; Lagadic, 
2002) since they can provide more comprehensive and 
biologically more relevant information on the potential impact 
of pollutants on the health status of organism (Van der Oost 
et al., 1996; Picado et al., 2007; Galloway, 2006). In 
respect to pollutants that has a lower stability in water 
such as organophosphate and carbamate pesticides, 
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biomarkers are reliable tools for assessing the impacts of 
the pollutants on biota even if the existing of the 
pollutants in water cannot be detected (Sturm et al., 
1999). It is because biomarkers can detect persistence 
responses and/or effects of the pollutants in such 
duration of biota lifetime (Depledge and Fossi, 1994). 
Therefore, they have been used enormously in 
biomonitoring to assess the risk of marine ecosystem 
pollution (Cajaraville et al., 2000; Martin-Diaz et al., 
2004).  

Mytilid mussels have received tremendous concerns as 
a sentinel organism when applying biomarkers in many 
pollution monitoring programmes (Cajaraville et al., 2000; 
Dizer et al., 2001a; Livingstone et al., 2000; Castro et al., 
2004; Nesto et al., 2004; Leinio and Lethonen 2005; De 
Luca-Abbott et al., 2005; Halldórsson et al., 2007: 
Verlecar et al., 2008). As sedentary and filter-feeder 
animals, marine mussels do not escape from 
contaminated water where they are living and can 
accumulate many contaminants to the level higher than 
existing in water (Widdows and Donkin, 1992). Hence, 
the behaviors are providing realistic sentinel organisms 
that indicate the biologically available concentrations. The 
realistic bioavailability of contaminants in mussels is also 
demonstrated by the fact that they have inefficient 
detoxifying enzymes permitting small portion of 
contaminants that can be transformed within their body 
(Nicholson and Lam, 2005). Consequently, mussels have 
been considered as notable eco-sentinel organisms for 
effect-based monitoring activity and have represented the 
sensitivity of detection harmful effect of pollutions 
(Goldberg et al., 1978; Kim et al., 2008).  

The extensive use of mussels and biomarkers for that 
purpose were carried out in temperate region by using 
blue mussels, Mytilus edulis (Halldórsson et al., 2007; 
Gagné et al., 2008; Tedesco et al., 2008; Yaqin and 
Hansen 2010). However, compare to the use of blue 
mussel in temperate regions there are few studies 
conducted concerning biomarkers in tropical region by 
using native species, green mussels, Perna viridis 
(Nicholson and Lam, 2005). It has been postulated that 
genetic and ecosystem differences of two marine 
mussels generated complicated inherent difficulties, when 
an extrapolation of M. edulis data to P. viridis was 
conducted. Therefore, a hot spot investigation of 
biomarkers in tropical regions by employing P. viridis is 
required to enhance the understanding of biological 
response of indigenous species toward contaminants to 
enforce biomonitoring of marine pollution effects 
programs in tropical region.  

This study applied selected biomarkers which are 
cholinesterase (ChE) and phagocytic activities to monitor 
effects of pollution in coastal areas of Indonesia. ChE 
activity has been widely used as a biomarker 
(biochemical response) for neurotoxic effects of 
organophophorous and carbamate pesticides. There are 
some influences of ChE activity by several metals, PAH 

 
 

  
 
 

 

and surfactants exposure (Tabche et al., 1997; 
Guilhermino et al., 1998; Akcha et al., 2000; Moreira et 
al., 2004). Moreover, the immune system is a vital part of 
the organism and associates intimately with the function 
of many organs and organ system (Fournier et al., 2000). 
In invertebrate, the phagocytic activity which is part of the 
immune system can be induced by wide range of 
xenobiotics. Hence, the phagocytic activity is considered 
as a less specific early indicator of immunotoxicity or as a 
biomarker (Oliver and Fisher, 1999; Blaise et al., 2002). 
The two selected biomarkers were employed in the 
current study based on microtiterplate techniques in order 
to provide a rapid, cost-effective, justifiable (Blaise et al., 
2002), and well-adapted application in developing 
countries. 

 

MATERIALS AND METHODS 
 
Chemicals 
 
Acetylthiocholine iodide, 5,5‟-Dithio-bis-(-2-Nitrobenzoic acid)  
(DTNB), γ-globuline, Bovine Serum Albumin, 
Fluoresceinisothiocyanate were purchased from Sigma. Bradford 
reagent was purchased from Bio-Rad Laboratories GmBH, 
Germany. All others reagents used were analytical grade products. 

 

Study area 
 
The study was conducted on three different areas of Indonesian 
coastal zone. A coastal area of Pangkajene Kepulauan (Pangkep) 
regency in South Sulawesi was chosen as reference site (station 1; 
Figure 1) because there are relatively minimal anthropogenic 
activities that were performed in this place such as traditional 
fisheries, which use static fishing equipment. On the other hand, 
two sites of Jakarta Bay, Kamal Muara and Cilincing (Figure 2) 
were chosen and considered as heavily anthropogenic polluted 
sites (station 2 and 3) since they received almost domestic and 
industrial wastes from Jakarta and neighboring cities of Jakarta. 
Moreover, some studies based on chemical analysis indicated that 
Jakarta Bay was under threatened by anthropogenic pollutants 
(Williams et al., 2000; Sudaryanto et al., 2002; Munawir, 2005). 
Whilst, many traditional fisheries activities such as green mussel 
aquacultures are situated along Jakarta Bay. Hence, Jakarta Bay is 
considered also as highly valued fisheries resources of coastal 
area, which plays indispensables role for preserving marine food 
resources and economic basis of small scales fishermen. 

 

Sample collection and preparation 
 
Thirty two mussels (5 to 6 cm) were handpicked on traditional green 
mussel cultures along Jakarta Bay at Kamal Muara and Cilincing, 
and from the Pangkep wild reference population attached naturally 
on traditional static fishing equipments.  

The collected living mussels were directly transferred to the 
laboratory using cool box under humid condition. Prior to dissecting 
out of the mussels, 1 ml of hemolymph was withdrawn from 
posterior adductor muscle (PAM) sinus using 1 ml syringe and 0.4  
mm needle followed by phagocytosis assay as described thus. Gill, 
foot, mantle and PAM were cut off, blotted dry and weighted before 
placing them in 2 ml potassium phosphate buffer in Eppendorf tube 
(0.1 M/pH 8.0). Prior to transferring the tissues to Ecotoxicology 
Department Laboratory (Technische Universitaet of Berlin, 
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Figure 1. Sampling station (ST) in Pangkajene Kepulauan (Pangkep).  
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Figure 2. Sampling stations (ST) in Jakarta Bay. 
 

 
Germany) using cool box that were filled by dry ice, the tissues 
were stored at -70°C. 
 
 
Cholinesterase activity 

 
The enzyme activity was measured following the modified Ellman 
method (Ellman et al., 1961) for a 96-well plate. A Dounce 
homogenizer was used to homogenize 0.3 g of each tissue in 2 ml 
potassium phosphate buffer (0.1 M/pH 8.0). The homogenate was 
centrifuged for 10 min at 10000 × g and the supernatant was 
harvested and stored at -80°C prior to the analysis of ChE activity 
and protein content. The supernatant was diluted in 1:2 of 

 
 

 
potassium phosphate buffer (0.1 M/pH 8.0) following the enzyme 
measurement.  

The enzyme measurement was carried out by placing 50 µl of the 
diluted sample into each well of the microplate. A blank was made 
by putting 50 µl of potassium phosphate buffer into the blank 
section of the microplate wells. The plate was incubated for 5 min in 

25
o
C with 200 µl of 0,75 mM 5,5‟-Dithio-bis-(-2-Nitrobenzoic acid) 

prior to the reaction which started by addition of 50 µl of 3 mM 
Acethylthiocholine iodide. Accordingly, the plate was read by 
photometry for microtiter plate (Spectra Thermo TECAN) in an 
interval of 30 s for 5 min at 405 nm. Four independent 
measurements of the ChE activity were carried out for each 
individual of P. viridis, and the average activity were calculated. 



Yaqin et al.    186 
 
 

 
Protein |measurement for cholinesterase assay 
 
Protein content measurement was carried out by diluting the gill 
extract 1:10 with distilled water. It was measured previously by 
placing 10 µl of the diluted extract and 10 µl of serial dilutions of γ-
globuline protein standard into a separate well section of the 
microplate. A blank was made by placing 10 µl of distilled water into 
the blank section of the microplate. After the addition of 5% 
Bradford-reagent solutions (200 µl) into the microplate, the samples 
were left in room temperature for 20 minutes to allow color 
development. The absorbance was read at 620 nm using 
photometry (Spectra Thermo TECAN).  

The ChE activity is expressed as nmoles of product developed 
per minute per mg of protein (nmol/min/mg protein). The ChE 
activity was measured on each tissue to recognize which tissue has 
the highest ChE activity. 

 

Phagocytic activity 

 
Phagocytic activity of hemocytes was determined by a microplate-
based fluorescence measurement method (Hansen, 1992; 
Anderson and Mora, 1995). This method is based on the number of 
fluorescence labeled yeast cells that were phagocytosed by mussel 
hemocytes. The yeast cells were treated and labeled by 
Fluoresceinisothiocyanate (FITC) (Anderson and Mora, 1995) and 
kept in aliquots at -80°C. After withdrawing hemolymph from the 
PAM sinus of the mussels, 100 µl of hemolymph was dropped into 
96-microplate wells. Five replicates were used to analyze the 
phagocytic activity and 3 replicates were used for the protein 
analysis. The density of hemocytes from each mussel was 
calculated by using a hemocytometer under a light transmission 
microscope. After the incubation of the plate for 30 min to allow 
hemocytes deposition at the bottom of the microplate wells, 25 µl of 
the FITC-labeled yeast was added into each phagocytic activity 
section of the microplate wells. A standard was made by adding 
100 µl of phosphate buffer saline (PBS) and 25 µl of the FITC-
labeled yeast into the microplate wells. One column (8 wells) was 
used as a blank section by adding 125 µl of PBS. The plate was 
incubated for 90 min in 21°C at dark condition. At the end of the 
incubation, 50 µl of 1 % glutaradehyd was added into each 
phagocytosis section of microplate wells, while 50 µl of methanol 
was dropped into the protein section of microplate wells. Before 
transferring to the laboratory in Germany, the plates were covered 
by a film and wrapped in aluminum and stored at 5°C in darkness. 
Accordingly, the fixatives were removed carefully and replaced by 
125 µl of PBS when samples have arrived in the laboratory. For 
quenching the fluorescence background of unphagocytosed cells, 
25 µl of 0.6 mg/ml trypan blue dissolved in PBS was added to each 
well of the microplate. The plate was incubated for 20 min prior to 
removing of all supernatants. The fluorescence of the ingested 
FITC-labeled yeast cells were read at excitation of 485 nm and 
emission of 535 nm using a microtiter plate fluorometer (Dynatech, 
Fluorolite 1000). 
 
 
Protein measurement for phagocytic assay 

 
A protein content measurement was carried out using hemocytes 
only. Prior to the measurement, the buffer was removed carefully 
and hemocytes were lysed with 50 µl of 0.1 N NaOH. After 
incubating the lysed hemocytes for 10 minutes in a shaking 
chamber, 10 µl of the lysed hemocytes and the serial dilutions of 
protein standard (Bovine Serum Albumin) were added to 96-
microplate wells. Accordingly, 200 µl of 5% Bradford-reagent 
solution were added into the plate and incubated for 20 minutes to 
allow color development. The absorbance of protein was measured 
at 620 nm using photometer (Spectra Thermo TECAN). 

 
 

  
 
 

 
Accordingly, the phagocytic activity was expressed as Relative 

Fluorescence Units (RFU) and finally calculated as a Phagocytic 
Index: RFU/mg hemocyte protein. 

 

Statistical analysis 

 
The statistical analyses were performed using non-parametric test, 
Kruskall-Wallis to distinguish the differences of ChE and phagocytic 
activity among the sites. If there were differences among the sites 
(p < 0.05), the test was continued by Dunn‟s multiple comparison 
test to determine the different between two sites. The statistical 
analyses were conducted using GraphPad Prism trial version 5.0 
for Windows, GraphPad Software, San Diego California USA. 
 

 

RESULTS 

 

Cholinesterase activity 

 

It has been reported that the ChE activity level differed 
among organs in marine mussels (Bocquené et al., 1990; 
Brown et al., 2004). The current study was started by 
recognizing which organ of green mussel, P. viridis that 
posses the highest ChE activity. It has been performed 
using P. viridis tissues from expected clean area. The 
results presented in Figure 3 demonstrated the median of 
the ChE activity in the gill which had the significant 
highest ChE activity namely 83.56 ± 12.19 nmol/min/mg 
protein followed by the foot (46.16 ± 4.18 nmol/min/mg 
protein), the mantle (27.35± 2.50 nmol/min/mg protein) 
and the PAM (4.94 ± 4.08 nmol/min/mg protein). 
Accordingly, the gill was used as a tissue target for 
measuring the ChE activity since the highest ChE activity 
of such organ should be the most suitable for 
measurement of the ChE activity inhibition (Bocquené et 
al., 1990; Escartin and Porte 1997; Valbonesi et al., 2003; 
Lau et al., 2004; Brown et al., 2004; Damiens et al., 2007; 
Taleb et al., 2009; Yaqin 2010).  
Statistical analysis showed the difference ChE activity in 
the gills of the samples (p < 0.05) (Figure 4). The animals 
collected from the reference site had the significant 
highest ChE activity (83.56 ± 12.19 nmol/min/mg protein) 
followed by the green mussel collected from heavily 
polluted areas, Kamal Muara (49.92 ± 3.29 nmol/min/mg 
protein) and Cilincing (27.20 ± 1.80 nmol/min/mg protein). 
Between two heavily polluted sites, the animals inhabited 
in Kamal Muara showed significant less inhibition of the 
ChE activity than those from Cilincing (p < 0.05). 
 
 
 

Phagocytic activity 

 

In the present study, the phagocytic activity expressed as 
phagocytic index, and hemocytes numbers and total cell 
protein content were measured simultaneously. The 
results were represented in Figures 5 and 6. Statistical 
analysis of the median of circulating hemocytes numbers 
exhibited no difference numbers of hemocytes ranging 
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Figure 3. Cholinesterase activity of different organs of green mussel, Perna viridis from Pangkep 
Indonesia. Data were expressed as median (25 and 75 % quartile, 5 and 95 % confidence 
interval). 
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Figure 4. Gills ChE activity of green mussel, Perna viridis collected in the selected areas of 
Indonesian waters. Data were expressed as median (25 and 75 % quartile, 5 and 95 % 
confidence interval). * indicate significant difference (p < 0.05) of the gills ChE activity. 
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Figure 5. Circular hemocytes of green mussel Perna viridis 
collected in the selected areas of Indonesia waters. Data were 
expressed as median (25 and 75% quartile, 5 and 95% confidence 
interval). 
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Figure 6. Phagocytotic Index of green mussel Perna viridis 
collected in the selected areas of Indonesia waters. Data were 
expressed as median (25 and 75% quartile, 5 and 95% confidence 
interval). *indicate significant difference (p < 0.05) of the 
hemolymph phagocytic activity. Y-axis is logarithmic scale. 
 
 

 

from 2,1250,000 to 2,370,000 cells/ml. In contrast, the 
median of the phagocytotic index demonstrated 
significant different phagocytic activities of P. viridis 
collected from gradient pollutions of Indonesian coastal 
waters (p < 0.05). The animals collected from the two 
heavily polluted sites in Jakarta Bay showed significant 
higher phagocytic index than those collected from 
reference sites. Nevertheless, there was no significant 

 
 

  
 
 

 

different phagocytic index within the polluted site (p = 

0.118).  The highest phagocytic index was demonstrated 
in  hemocytes  of P. viridis from Cilincing  (23410.10  
RFU/mg protein) which followed by Kamal Muara 

(7566.84 RFU/mg protein) and reference site, Pangkep 

(1714.19 RFU/mg protein). 
 
 
DISCUSSION 

 

Cholinesterase activity 

 

Cholinesterases (ChEs) are enzymes that hydrolyses and 
inactivates neural transmitter acetylcholine (ACh) for 
regulating neural transmission impulse in the synaptic 
gap of cholinergic synapses and neuromuscular junctions 
(Soreq and Seidman, 2001). ACh play an important role 
both as excitatory and inhibitory transmitters of the gill 
muscle of bivalve (Gainey et al., 2003). In blue mussel, 
Mytilus edulis, ciliary movement of the gill is controlled by 
acetylcholine, dopamine and 5-hydrotryptamine (Aiello, 
1990). Organophosphorous and carbamate pesticides 
inhibit ChE activity which may lead to severe 
physiological impairment of marine animals 
(Dauberschmidit et al., 1997) such as reduction in feeding 
efficiency of marine mussels (Donkin et al., 1997). 
 

Since ChEs was purified by Wachtendonk and Neef 
(1979) in marine mussels hemolymph, a measurement of 
ChE activity in marine mussels has been used as a 
biomarker in laboratory test (Galloway et al., 2002; 
Rickwood and Galloway, 2004; Canty et al., 2007; Yaqin 
and Hansen 2010) and several international monitoring 
programs in the field (Narbonne et al., 1999; Cajaraville 
et al., 2000; Dizer et al., 2001a,b; Roméo et al., 2003; 
Bocquené et al., 2004; Gagné et al., 2008).  

Characterization of ChEs in bivalve has been 
conducted in some bivalves e.g. in M. galloprovincialis 
the ChE specific activity was predominantly localized in 
the gills compare to others organs (Mora et al., 1999; 
Porte et al., 2001; Taleb et al., 2009). Moreover, the ChE 
activity from M. galloprovincialis gill was observed more 
sensitive to organophosphorous pesticides than that from 
the digestive gland (Escartin and Porte, 1997). In M. 
edulis, Bocquené et al. (1990) found that the highest ChE 
activity occurred in the gill compare to others organs such 
as the hepatopancreas, the mantle and the adducent 
muscle. By characterizing and comparing the ChEs in 
different organ of M. edulis, Brown et al. (2004) found that 
„mitochondrial‟ fraction of foot had the highest ChE 
specific activity with very low recovery of activity.  

Accordingly, the gill „microsomal‟ activity had the 
second highest ChE specific activity with useful level of 
recovery and therefore was the most suitable fraction for 
biomarker application. The highest ChE activity in the gill 
compared to others organs such as the adducent muscle 
and the digestive gland were observed in the Antarctic 
scallop, Adamussium colbecki (Corsil et al., 2004). 
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Compared to the foot, the gill of the bivalve, Scapharca 
inaequivalvis, demonstrated the higher specific ChE 
activity level as well (Romani et al., 2005). Eventually, 
Bonacci et al. (2008) observed that the highest ChE 
activity also occurred in the gill of scallop, (Pecten 
jacobaeus) compared to others organs which were the 
adducent muscle and the digestive gland. Kopecka-
Pilarczyk (2010) observed that the ChE activity from gill 
of Mytilus trossulus was the most sensitive enzyme 
activity compared to the activity from others organs and 
whole body tissue when exposed to carbaryl and metals.  

The current study compared the ChE activity of green 
mussel, P. viridis in different organs such as the gill, the 
foot, the mantle and the PAM. The results demonstrated 
that the gill of P. viridis had significant higher of the ChE 
activity compared to the foot, the mantle and the PAM. 
Porte and Albaiges (2002) demonstrated that the ChE 
activity from the gill of blue mussels, Mytilus 
galloprovincialis was more sensitive enzyme activity than 
that of digestive gland and it revealed a certain 
correlation with the concentration of fenitrothion in whole 
mussels. It has been reported that the gill of P. viridis 
collected from Hong Kong waters had the higher ChE 
activity than that of the whole tissue and this ChE activity 
was not size-dependent (Lau and Wong, 2003). This is 
conceivable because mussels use their gills not only as a 
respiratory apparatus but also as filter feeder organ 
thereby ambient water filtered and managed for gaseous 
exchanges and sifting food (Bayne et al., 1976). Since 
the gill are the front line of contact with contaminants and 
the first line of defense (Lau and Wong, 2003), 
detoxification compounds such as ChEs are necessary to 
be produced to protect other organs. Consequently, the 
production of ChEs not only provides as the control of 
neurotransmission, but also serves as contaminants 
detoxification particularly for organophosphorus and 
carbamate pesticides (Soreq and Seidman, 2001). In 
addition, it has been reported that the protein level of P. 
viridis gill was not seasonal dependent which lead to 
reduce the intrinsic variability of the biochemical 
responses in different growth phase throughout the year 
(Lau et al., 2004). Those evidences set up the gill as a 
par excellence tissue for biomarkers application to 
minimize effects caused by the natural reproductive 
cycles and the dilution effect due to large variation in the 
total tissue protein (Lau et al., 2004). The selection of the 
gill as tissue target for conducting biomarkers were also 
shown by the nature of the gill, which comes into contacts 
with relatively large volumes of seawater compared to the 
rest of the animal so that conferring them with the 
potential for being a suitable target tissue for xenobiotic 
substance exposure.  

The present study used the gill of P. viridis to 
investigate pollutants effect to ChE activity in some 
coastal areas of Indonesia. The results suggested that 
the ChE activity was a sensitive tool to detect neurotoxic 
effects of pollutants since it could discern different levels 

 
 
 

 

of two heavily polluted areas. It was supported by the 
evident that the ChE activity of the gill of P. viridis from 
reference site was significantly higher than that from the 
gill of P. viridis which inhabit two polluted sites. The 
inhibition of the ChE activity from the gill of P. viridis 
collected from Kamal Muara was about 49.2%. 
Statistically, the greatest inhibition of the ChE activity was 
indicated in mussels from Cilincing, which was about 
72.41%. By exposing brown mussels, (Perna perna) to 
furadan (carbamate pesticide), Alves et al. (2002) 
observed that the ChE activity of the gill was suppressed 
by 35%.  

Ludke et al. (1975) classified the percentage of ChE 
activity inhibition based on comparison of the individual 
value with the activity of the normal population for 
providing the interpretation of the environmental risk. The 
following are the risk criteria of inhibition percentage of 
ChE activity that were proposed by Ludke et al. (1975): 
 

0 to 20% = zone of normal variation  
20 to 50% = presence of exposure or zone of reversible 
effects  
50 to 100% = life-threatening situation or zone of 
irreversible effects 

 

In respect to estuarine fishes, Coppage (1972) suggested 
that inhibition level of the ChE activity in the range of 20 
to 70% could be classified as an indication of 
organophsophorous exposure. Subsequent studies 
observed that the inhibition of the ChE activity in the fish 
brain, which reached 70 to 90% indicated mortality 
(Coppage et al., 1975; Coppage and Matthews, 1975). 
Sandahl et al. (2005) observed that the inhibition of the 
ChE activity in brain and muscle from juvenile coho 
salmon (Oncorhynchus kisutch) was correlated well with 
the behavior disruption, that is, feeding and swimming 
ability when the fish were exposed by chlorphyrifos. At 
the lowest concentration (0.6 µg/l), chrlophyrifos caused 
12% inhibition of the muscle ChE activity reducing 27 % 
of the swimming rate, while no mortality was observed 
when fish exposed by the high concentration (2.5 µg/l) 
inhibiting 67% of muscle‟s ChE activity. By conducting 
microcosm study using mixtures of selected 
organophosphorous pesticides, Sibley et al. (2000) 
observed that 10% mortality was correlated with 
approximately 50% inhibition of AChE activity, while 50% 
mortality was correlated with approximately 90% 
inhibition of AChE activity of fathead minnows. Fleming et 
al. (1995) found the die-off freshwater mussels (Elliptio 
steinstansana) from sites that were influenced by 
agricultural activities with the inhibition of ChE activity 
from 65 to 73% compared to the reference site. Based on 
the criteria and the results of those studies, it is 
suggested that discharged pollutants into coastal area of 
Jakarta Bay indicated neurotoxic compound causing from 
reversible to irreversible effects of the neurological 
activity of the green mussel population. By compiling the 
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data of ChE activity from the research above which 
ranging from bird to freshwater mussel it is suggested 
that the green mussels which populated in Kamal Muara 
indicated reversible effects, while those from Cilincing 
showed irreversible conditions.  

The link between the inhibition of ChE activity of 
sentinel organism and the discharged neurotoxic 
compounds from agricultural, urban and industrial activity 
to aquatic environment has been suggested by many 
studies (Fulton and Key 2001; Printes and Callaghan 
2004; Galloway et al., 2002; Crane et al., 2002; Rickwood 
and Galloway, 2004; Canty et al., 2007; Warberg et al., 
2007). However, the relationship between ChE activity 
and higher level biomarker such as feeding rate in green 
mussel has not been studied yet. Therefore, a chronic in 
vivo study on the response of ChE activity in green 
mussel and other behavioral biomarkers such as feeding 
rate to the serial concentrations of pollutants, which 
picturize suspected pollution area concentrations, is 
indispensable to translate the inhibition of ChE activity 
induced by pollutants into ecological perspective. The 
translatable of ecological consequence of the suppressed 
ChE activity is a vital consideration in ecological risk 
assessment in the coastal zone. It is because an 
appropriate ecological relevance of biomarkers can 
eliminate the primary source of uncertainty in application 
of ecological risk assessment (Sibley et al., 2000). 
 

 

Phagcytosis activity 

 

Green mussel hemolymph contains both hemocyte and 
humoral defense factors which are responsible for the 
defense system. Hemocytes circulating in hemolymph are 
the principal cellular effectors of invertebrate immunity 
(Mitta et al., 1999) which have a capability to perform 
phagocytosis of foreign materials (Cheng, 1984; Carballal 
et al., 1997) and cytotoxycity via the production of 
radicals (Winston et al., 1996).  

Phagocytosis of mussel hemocytes can be affected by 
various chemical stressors in the aquatic environment 
(Anderson and Mora, 1995). Biphasic patterns of mussel 
phagocytic responses induced by xenobiotic have been 
demonstrated in many laboratory studies (Cole et al., 
1994; Pipe et al., 1999; Parry and Pipe, 2004). 
Theoretically, the phagocytic activity will be stimulated 
when mussels are exposed to low level of contaminants, 
while it will be suppressed when mussel are exposed to 
high level of contaminants. Consequently, measurement 
of the phagocytic activity, which is as part of immune 
system of mussel, has been used as a biomarker of 
xenobiotic substances effect (Anderson and Mora, 1995; 
Oliver and Fisher, 1999; Blaise et al., 2002; Gagné et al., 
2002).  

In spite of mussel hemocytes playing an important role 
in the phagocytic activity, it is difficult to depict the 
correlation pattern between circulated hemocytes number 

 
 

  
 
 

 

and the phagocytic activity of mussel. The current study 
showed that there was no different numbers of circulating 
hemocytes of green mussel, which were collected from 
both polluted and clean sites. However, significant 
differences of the phagocytic activity between the 
collected green mussels from polluted sites and those 
from clean site were evident. The data showed that 
discharged pollutants in Jakarta Bay have stressed 
cultivated green mussels, which stimulated significantly 
their phagocytic activity compared to the phagocytic 
activity of the green mussels collected from the clean site. 
The modulation of mussel phagogytic activity was in 
accordance with Luengen et al. (2004) who observed the 
elevation of phagocytic activity of mussels that collected 
from polluted sites. The elevation of phagocytic activity 
induced by the pollutants may be a part of mussel‟s 
strategy to sequester the toxic materials from vulnerable 
organs (Oliver et al., 2001). Nevertheless, Dizer et al. 
(2001b) found that high number of circulating hemocytes 
of mussels collected from control site followed by 
relatively low phagocytic activity, while relatively low 
number of hemocytes from polluted sites had a high 
phagocytic activity. They could not depict clearly the 
relationship between hemocytes number and the 
phagocytic activity of mussels.  

The complicated relationship between hemocytes 
number and the phagocytic activity of mussels may result 
from dynamic association/dissociation between 
hemocytes and bivalve tissues that enable to change the 
total size of the hemocytes population within bivalve body 
over short time (Ford et al., 1993). The population could 
not be simply depicted by circulating number of 
hemocytes, which were drained from the PAM sinus as 
the mussel has the open circulatory blood system, which 
circulate the blood to whole organs. In addition, 
commonly the mussel hemocytes are composed by 
phagocytotic and unphagocytotic hemocytes which can 
be altered by xenobiotic substances (Pipe et al., 1999). 
Unfortunately, most of the techniques to measure the 
phagocytic activity including the technique used in the 
present study were based on the mixture of hemocytes 
sub-population so that an estimation of capability level of 
each sub-population of hemocytes was not possible.  

Although, the present study enabled to distinguish the 
phagocytic activity of green mussels dwelled in polluted 
and clean sites, the difference of the phagocytic activity 
within the polluted site could not be differentiated 
significantly. Having taking into account the data from the 
ChE activity, which enable to distinguish the magnitude 
effects of released pollutants within the polluted sites, it is 
tempting to suggest that released pollutants in Jakarta 
Bay seem to be ChEs inhibitors, which raised greater 
impact on the ChE activity rather than the phagocytosis 
activity. For that purpose, the chemical analysis of 
water/sediment samples and relevant pollutants within 
mussel‟s tissue should be taken into account. Regardless 
of the chemical analysis 
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approach, the ChE activity indicated a more responsive 
tool compared to the phagocytic activity so that it could 
distinguish between two heavily polluted sites. However, 
it is hard to justify that the ChE activity is more sensitive 
compared to phagocytic activity as was observed by 
Perez et al. (2004) in ChE activity of invertebrates, 
Scrobicularia plana (clam) and Nereis diversicolor 
(marine worm). The authors delineated higher sensitivity 
of ChE activity compared to others biomarkers that were 
used in biomonitoring of Spain waters. Therefore, the 
useful results that recorded by the current study are the 
information on neurotoxicity and immunotoxicity 
compounds which were present in Jakarta Bay and the 
magnitude impact of neurotoxicity contaminants to induce 
an effect is greater than the immunotoxicity contaminants. 
 
 

 

Conclusion 

 

Conclusively, the results suggested that the use of the 
selected biomarkers is a reliable and preferential strategy 
in the ecological risk assessment of released xenobiotic 
compounds in coastal waters due to their ability to 
elucidate bio-effects of neuro-immuno systems 
disruptors. 
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