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Individual-based modelling (IbM) has become a fully incorporated part of predictive microbiology 
methodologies in the last decade. Previous studies of bacterial culture growth cycle with the IbM 
simulator INDISIM analysed the evolution of bacterial biomass distribution during the different phases 
of growth. The predicted forward shift during lag, stability during exponential and backward shift when 
entering the stationary phase have been experimentally observed in an Escherichia coli batch culture 
by means of flow cytometry and particle size analysis measurements. In addition, the experimental 
results were analysed using the product distance, a mathematical tool developed to assess the 
evolution of cell size distribution. These results confirmed the assumptions about the bacterial lag 
phase made by INDISIM. Moreover, flow cytometry and particle analysis methods were shown to be 
useful experimental techniques in combination with IbM simulations when studying the evolution of 
individual properties during the bacterial growth cycle. This is essential in order to provide a new and 
consistent interpretation of the dynamics and heterogeneity of cell biomass during the growth cycle. 
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INTRODUCTION 

 
Predictive microbiology consists of models that attempt to 
understand and predict the behaviour of microbial 
systems. These models are built according to the specific 
phenomena to be tackled and to the required level of 
description (Ferrer et al., 2008). One of the open subjects 
in predictive microbiology is to explain how the intrinsic 
variability and heterogeneity of axenic bacterial cultures 
(Julià and Vives-Rego, 2005; Vives-Rego et al., 2003) 
influences the different phases of their growth (Prats et 
al., 2008). The full integration of Individual-based  
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modelling (IbM) in the framework of predictive microbio-
logy in the last decade provides a mesoscopic connection 
between cellular descriptions and the dynamics of 
bacterial populations (Ferrer et al., 2009).  

Individual-based models of populations and communi-
ties were defined by Grimm (1999) as 'simulation models 
that treat individuals as unique and discrete entities which 
have at least one property in addition to age that changes 
during the life cycle'. In microbiology, Individual-based 
models are bottom-up approaches that tackle the links 
between cells and population; they model the bacteria as 
individual entities that are subject to a set of biological 
and physical rules. The collective behaviour of the popu-
lation emerges from the simulation of a large number of 
individuals and from their interactions with their 
neighbouring cells and local environment. Stochasticity, 
introduced in the rules governing the individual behaviour 
and interactions, plays a central role in the emergence 
behaviour observed at the system level. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Example of an INDISIM simulation that summarizes 
some of the results published in Prats et al. (2006): overview of 
the growth curve (top) and the corresponding evolution of the 
biomass distribution (bottom, in simulation units). 

 

 

The use of IbM in the framework of microbiology has 
produced a pool of interesting results. Two of the 
available IbM simulators are BacSim (Kreft et al., 1998) 
and INDISIM (Ginovart et al., 2002a). Both were 
designed to model and simulate the growth of bacteria 
under particular conditions, and they have been used to 
study various specific microbial processes such as those 
occurring in soil or in food (Ginovart et al., 2002c, 2005). 
IbMs have proved especially useful in the study of 
systems with spatial complexity, such as biofilms (Kreft et 
al., 2001) and bacterial colonies in agar plates (Ginovart 
et al., 2002b), and for tackling transient stages of growth 
such as initial or intermediate lag phases (Dens et al., 
2004a, 2004b).  

Prats et al. (2006) presented a detailed study of the 
evolution of the biomass distribution of a bacterial culture 
during the growth cycle. INDISIM simulations were used 
to reproduce and analyse this evolution during the lag 
phase in order to extract general underlying principles. 
The growth of a 100-cell inoculum in a homogeneous 
batch culture under different conditions was simulated, 
and the evolution of the biomass distribution was 
monitored through the different phases of growth. No lag 
was explicitly included in the model of bacteria, yet a lag 
phase in the population growth still emerged as a 
consequence of the inoculated population structure.  

Figure 1 shows a summarized set of the INDISIM 
simulation results presented by Prats et al. (2006). It 
depicts the evolution of the population biomass distri-
bution (in simulation units) together with the cell density 
growth curve for a batch bacterial culture. The three 
phases, lag (initial -I- and transition -T-), exponential and 

  
stationary are clearly observed in both plots (Figure 1). 
The evoution of the system observed in these simulations 
can be outlined as follows: 

 

1. The inoculated bacteria were sampled from a previous 
simulation of a culture in the stationary phase. Therefore, 
the initial mean mass of the population was small, and 
the biomass distribution differed from that characteristic 
of the exponential phase.  
2. During the lag phase, mean mass increased. At the 
same time, the biomass distribution changed its shape 
and showed a forward shift. The lag phase ended when 
both the biomass distribution shape and the mean mass 
reached their exponential characteristic values.  
3. The exponential phase was characterized by the 
stability of the biomass distribution, which was main-
tained as long as there was enough nutrient available to 
allow unrestricted cell growth without intercellular 
competition.  
4. When the nutrient ran short, the culture entered the 
stationary phase, denoted by a change in the slope of the 
growth curve. As this occurred, both a backward shift in 
the biomass distribution and a decrease in mean mass 
were observed. 

 

These results showed that, unlike classic continuous 
models, IbM approaches may provide detailed informa-
tion of the structure of a microbial population. Thus, 
experimental techniques that assess cell density such as 
microscopy count, optical density and plate count, among 
others (Rasch, 2004), take only partial advantage of the 
predictions of IbM simulations. Techniques like flow 
cytometry and particle size analysis, which assess the 
distribution of individual cell properties in the population 
of real systems, are more suitable to complement IbM. 
Specifically, flow cytometry can be used to measure 
several individual parameters, identify sub-populations or 
count microorganisms (Vives -Rego et al., 2000), and 
also to monitor their evolution during the growth cycle 
(Åkerlund et al., 1995). Particle size analysis allow the 
simultaneous measurement of cell density and cell size 
distribution.  

This paper has two main objectives. First, we want to 
show the usefulness and soundness of cytometry 
techniques in order to experimentally observe IbM 
predictions at the mesoscopic level (that is, regarding 
population structure and changes in it). Second, we want 
to focus particularly on the INDISIM predictions reported 
by Prats et al. (2006) that have been summarized in this 
introduction, and to look for the predicted behaviours in a 
real bacterial culture. In addition, we want to validate the 
suitability of a mathematical tool named product distance 
(D(t)), which was defined by Prats et al. (2006) as a 
measurement of the evolution of biomass distribution 
during the stages of growth. Product distance is here 
redefined, adapted and used to assess the evolution of 
experimental measurements. 



 
MATERIALS AND METHODS 
 
Experimental setup 

 
Experiments were performed using Escherichia coli CECT 101 
(Colección Española de Cultivos Tipo, Spain). Bacteria were grown 
in M9 medium consisting of part A (per liter, Na2HPO4, 6 g, KH2PO4,  
3 g, NaCl, 5 g, NH4Cl, 1 g); part B(a 1 M solution of MgSO4·7H2O); 
and part C(a 0.01 M solution of CaCl 2). Parts A, B and C were 
autoclaved separately. 1 ml of part B and 10 ml of part C were 

added to 1 l of part A. Glucose sterilized by filtration through 0.2 m 
was added at 0.5 g per litre. Final pH was 7.5. Cultures were 
incubated at 35°C with shaking at 150 r.p.m. After inoculation with  
0.5% of an equivalent overnight culture obtained under the same 
culture conditions, growth was monitored by flow cytometry and 
electric particle size analysis. We measured the cell density and the 
size distribution of the cultures at different stages of the growth 
cycle.  

Flow cytometry was carried out using a Cytomics FC 500 MPL 
instrument (Beckman Coulter, Fullerton, CA, USA), operating in the 
standard configuration. The optical alignment was based on an 
optimized signal from 10 nm fluorescent beads (Flowcheck, Coulter 
Corporation, Miami, Florida, USA). Forward scattering (FS) values 
were measured, stored and analysed. Experimental data were 
loaded with Summit ® V3.1 software (Cytomation, Inc.), and 
exported for analysis with Microsoft Excel 2002 (© Microsoft 
Corporation 1985-2001) and Matlab ® R2006b (© The Mathworks, 
Inc. 1984-2006).  

Particle size analysis was carried out using a Multisizer II (MSZ) 
electronic particle analyzer (Coulter Corporation ®) with the 

capacity to process 100 l of the cell suspension in 0.9% NaCl 

previously filtered through 0.2 m. Cell sizes were given in terms of 
equivalent spheres. Data were analysed with Coulter Multisizer 
AccuComp software version 1.15 (Coulter Corporation). Files 
generated by the MSZ were exported in an ASCII (tab delimited) 
format and analysed with Microsoft Excel 2002 (© Microsoft 
Corporation 1985-2001) and Matlab ® R2006b (© The Mathworks, 
Inc. 1984-2006).  

Three independent experiments were performed under the same 
conditions: T35-061121 (A), T35-070123 (B) and T35-070130 (C). 
After the first one (A), we decided to filter the medium in order to 

reduce the background noise (0.22 m). The three trials (A, B and 
C) provided equivalent results. 

 

 
Mathematical distances 

 
A mathematical distance between two biomass distributions was 
introduced by López (1992) to characterize the dynamics of 
bacterial cultures, and it was then adapted by Prats et al. (2006) to 
study the lag phase. The starting premise is to assume that the 
biomass distribution of a bacterial culture remains fixed all 
throughout the balanced exponential growth. This distance 
measures the difference between the instantaneous biomass 
distribution of a bacterial population and its characteristic lognormal 
distribution during the exponential phase under the given 
conditions: the closer the distributions, the lower the mathematical 
distance. These distances were used to analyze INDISIM 
simulation results: they typically decreased during lag phase, 
remained close to zero during the exponential phase and increased 
again when the culture entered the stationary phase.  

In order to use them to analyse experimental results, the 
distances (originally defined to deal with biomasses) were re-
defined in terms of the measured diameters. These are called mean 
diameter distance (Equation 1), diameter distribution distance 
(Equation 2) and product distance (Equation 3) as follows: 
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where d (t) is the mean observed diameter of a sample at the time 

of measurement t, and pkd is the standardized distribution of 

diameters among the population of the sample. These distances 
 
are evaluated from a reference measured mean diameter ( d exp ) and 

diameter distribution ( pkd ,exp ), which are set as the mean of 
 
the exponential phase measurements. The number of diameter 
classes within the diameter distribution, N, is equal to 256 for both 
the FS and the MSZ measurements (it is the number of channels of 
both instruments). 
 

 

RESULTS 

 

Transformation of FS measurements into cell 

diameter distributions 

 

The relation between FS measurements and cell 
diameter is not a monotonic function, although there is a 
correlation between them (Shapiro, 2003; Julià et al., 
2000) . Julià et al. (2000) proposed a specific second-
order function for different bacterial species that relates 
FS measurements and equivalent cell diameters, d. For 
an E. coli culture, this is (Equation 4): 
 

d (m) = 8.54  ( fs)
2
  6.71 ( fs)  2.0810

5
 (4) 

 
where fs referred to as the label of the channel (from 1 to 
256).  

We used this relationship to convert FS measurements 
into diameters, which we called transformed forward 
scattering (TFS). Previously, we checked the soundness 
of Equation 4 by comparing the MSZ measurements with 
the corresponding TFS values in the first experiment. We 
assessed the likelihood between MSZ and TFS using the 
relative differences of three characteristic parameters: 
mean diameter (Mean), standard deviation (Std Dev), and 
the median (Median). Table 1 shows this comparison for 
experiment A. The discrepancy between MSZ and TFS 
measurements is under 5% in all the evaluated indicators 
except for the Std Dev of the last sample. Therefore, TFS 
are consistent with the diameter distributions obtained 
with the multisizer. 



 
Table 1. Discrepancy (Disc) between diameter distributions  
obtained with the multisizer (MSZ) and the diameter 
distributions obtained by transforming forward scatter (FS)  
distributions  with Equation 4  (TFS) in the experiment A 
(samples taken at T1: 53 min, T2: 131 min, T3: 218 min, T4:  
266 min, T5: 328 min).  

 
   Mean Std. Dev. Median 

  TFS (m) 0.853 0.11 0.83 

 T1 MSZ (m) 0.856 0.113 0.838 

  Disc (%) 0.350 2.655 0.955 

  TFS (m) 0.863 0.118 0.847 

 T2 MSZ (m) 0.881 0.124 0.861 

  Disc (%) 2.043 4.839 1.626 

  TFS (m) 0.863 0.116 0.847 

 T3 MSZ (m) 0.862 0.118 0.838 

  Disc (%) 0.116 1.695 1.074 

  TFS (m) 0.877 0.117 0.864 

 T4 MSZ (m) 0.879 0.122 0.861 

  Disc (%) 0.228 4.098 0.348 

  TFS (m) 0.884 0.115 0.864 

 T5 MSZ (m) 0.902 0.127 0.886 
  Disc (%) 1.996 9.449 2.483  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Cell concentration (experiment C), measured with the flow cytometer using 

an internal calibrator. A sigmoid curve has been fitted ( r 
2

 = 0.993 ). The lag phase 

calculated by means of the geometrical definition is  = 43min . 
 

 

Evolution of cell diameter distribution during 

the growth cycle 

 

The evolution of the cell diameter distribution of all three 
experimental trials showed the same behaviour. We 

 
 

 

present only the results of the FS measurements of 
experiment C to serve as an exemplary result.  

Three phases of growth were clearly observed in the 
experimental evolution of the cell density (Figure 2): lag, 
exponential and transition to stationary phases. A 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Four FS measurements taken from the exponential phase (experiment C). The FS 
values have been transformed into diameters with Equation 4, and show the stability of the 
diameter distribution during exponential balanced growth. 

 

 

sigmoidal curve was fitted to the growth curve ( r 
2

 = 

0.993 ), and the culture lag parameter (), using the 
geometrical definition (Lodge and Hinshellwood, 1943), was 

determined:  = 43 min . 
 

 

Stability of the diameter distribution during 

exponential phase 
 
According to theoretical predictions (Wagensberg et al., 
1988), empirical data (Åkerlund et al., 1995) and INDISIM 
simulations results (Prats et al., 2006), the biomass 
distribution remains fixed under balanced growth 
conditions and its shape depends solely on the bacterial 
strain and the medium conditions. The flow cytometry 
measurements corroborated this predicted behaviour for 
the cell diameter distribution. Figure 3 shows the stability 
of the distribution at four different moments of the 
exponential phase in experiment C. 
 

 

Evolution of diameter distribution and the mean 

diameter 
 
The inoculum was sampled from a previous culture which 
was in the stationary phase. Since bacteria had under-
gone a decrease in their biomass caused by starvation 
conditions, the inoculum showed a shrunken and left-
biased diameter distribution different from the exponential 
one. As a result, a forward shift of this distribution during 
the lag phase and a backward shift when the culture 

 
 

 

started starving as it entered the stationary phase were 
observed (Figure 4). INDISIM simulations showed exactly 
the same behaviour (Figure 1) and an interpretation of it: 
when the cells of the inoculum are added to the new fresh 
medium, they must increase their biomass before starting 
the reproduction cycle (Prats et al., 2006).  

The evolution of the mean diameter was also consistent 
with INDISIM results. Three different phases could be 
clearly distinguished: the mean diameter increased during 
the lag phase, remained approximately constant during 
the exponential phase and decreased when the culture 
entered the stationary phase (Figure 5). 
 

 

Analysing the experimental results with the product 

distance 

 

The evolution of the measured diameter distribution was 
analysed with the distances introduced. The evolution of 
the product distance during experiment C is shown in 
Figure 6a and compared to the one predicted by INDISIM 
simulations (Figure 6b). The experimental behaviour 
follows INDISIM predictions: after an initial decrease 
during the lag phase, the product distance remained 
close to zero during the exponential phase and finally 
increased as the culture entered the stationary phase. 

 

DISCUSSION 

 

INDISIM simulation results provided a detailed 
explanation of the changes ocurring in the population 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. FS-measured distribution at inoculation time (t0), mean of the measured distributions 
during exponential phase (texp) and last FS-measured distribution at the end of growth (tend) 
(experiment C) . The arrows indicate the displacements (1) from lag to exponential and (2) from 
exponential to stationary phases. The FS vaules have been transformed into diameters with 
Equation 4.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Mean diameter evolution of the culture (experiment C), from FS measurements that have been 
transformed into diameters with Equation 4. Dashed lines indicate the lag (I), exponential (II) and 
stationary (III) phases. Dotted line indicates the mean value during exponential phase. 

 

 

structure during bacterial growth cycle. They focused on 
the evolution of biomass distribution in the different 
phases of growth. Simulations showed that during the lag 
phase there are important changes in this variable. They 
offered the conclusion that the small biomasses of 
inoculated bacteria alone can give rise to an individual lag 
phase, although other factors (such as as metabolic 

 
 

 

adaptation to a new nutrient) can accompany or prolong 
it. The lag phase observed for the whole population may 
be produced by many factors, but the adaptation of the 
(relatively small) initial mass distribution irrevocably 
contributes to this interim, since adverse environmental 
conditions found in the stationary phase produces a 
shrinkage of bacteria. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6. (a) Product distance values (Equation 3) for FS measurements previously transformed into diameters with Equation 4 
(experiment C), and (b) INDISIM simulation prediction of the evolution of the product distance (Prats et al., 2006). Dashed l ines 
indicate the lag (I), exponential (II) and stationary (III) phases. 

 

 

These predictions of INDISIM had not been specifically 
checked until now, since there is a lack of experimental 
information from this mesoscopic approach. In this paper, 
we have seen that flow cytometry and electric particlesize 
analysis are suitable methods for obtaining experimental 
data at this level of description that are useful to assess 
IbM predictions. They provide an instantaneous picture of 
the structure of the studied population, and offer the 
possibility of studying its evolution from a dynamic 
perspective. These kinds of measurements are 
necessary to account for the high heterogeneity of 
bacteria. This feature is frequently neglected when 
modelling microbial communities, and it might be 
responsible for some crucial but not yet understood 
phenomena.  

The experimental results are in agreement with 
INDISIM predictions. The expected initial forward shift in 
diameter size distribution during the lag phase, its stability 
during the exponential phase and its backward shift when 
the culture enters the stationay phase were reproduced 
by the real system. We saw, experimentally, an increase 
in cellular mean mass during the lag phase. This 
reinforces the INDISIM model which closely links the lag 
phase of a culture with the adaptation of bacterial sizes. It 
was a very simple hypothesis, but it is probably present in 
most bacterial cultures. The observed decrease in the 
mean size observed at the end of the exponential growth 
also supports the response modelled by INDISIM and 
suggests a kind of cyclic behaviour of the size 
distribution, moving forward when the conditions are 
proper until balanced growth is achieved, and backward 
when the conditions become adverse. Such 

 
 

 

dynamic behaviour of the size distribution strengthens the 
need for mathematical methods to evaluate it. The 
product distance enables quantitative description of the 
evolution of a bacterial population in terms of the 
distribution of individual properties (diameters) and allows 
distinction of the different phases of bacterial growth. The 
product distance is a conceptually simple and precise tool 
to quantitatively characterize the ongoing adaptation 
processes undergone by real bacterial communities, 
often reflected as changes in probably any distribution of 
individual properties.  

To sum up, the combination of flow cytometry, particle 
analysis and Individual-based Modelling proved useful for 
the study of lag, exponential and stationary phases of 
bacterial cultures. To begin, cell- by- cell size analysing 
techniques provide measurements at both individual and 
population levels. In addition, INDISIM simulations 
provide appropriate tools to analyse and explain these 
observations, and therefore to interpret individual cell size 
variability in axenic cultures. The connection between the 
structure observed at a population level and the expected 
behaviour of bacterial cultures is not yet fully understood, 
but INDISIM showed confirmed predictive capability. Its 
application in combination with flow cytometry and 
particle size analysis provides a promising pathway to 
gain insight into microbial ecosystems. 
 

 

ACKNOWLEDGEMENTS 

 

We gratefully acknowledge the financial support of the 
European Social Fund and AGAUR-Generalitat de 



 
Catalunya 2007FIC-00941, and the Plan Nacional I+D+i 
of the Ministerio de Educación y Ciencia CGL 2007-
65142.  

We are extremely grateful to Jaume Comas-Riu, Ricard 
López, Chary González Flores (Scientific and Technical 
Services, Universitat de Barcelona), Bàrbara Flix and 
Rosa Carbó (Escola Superior d'Agricultura de Barcelona, 
Universitat Politècnica de Catalunya) for their helpful 
technical assistance. We are also grateful to the referee 
that reviewed the original manuscript for helpful 
suggestions on redefining its context. 
 

 
REFERENCES 
 
Åkerlund T, Nordström K, Bernander R (1995). Analysis of cell size and 

DNA content in exponentially growing and stationary-phase batch 
cultures of Escherichia coli. J. Bacteriol. 177: 6791-6797. 

Dens EJ, Bernaerts K, Standaert AR, Kreft JU, Van Impe JF (2004a). 
Cell division theory and individual-based modeling of microbial lag.  
Part II. Modeling lag phenomena induced by temperature shifts. Int.  
J. Food Microbiol. 101: 319-332.  

Dens EJ, Bernaerts K, Standaert AR, Van Impe JF (2004b). Cell 
division theory and individual-based modeling of microbial lag. Part I. 
The theory of cell division. Int. J. Food Microbiol. 101: 303-318.  

Ferrer J, Prats C, López D (2008). Individual-based modelling: an 
essential tool for microbiology. J. Biol. Phys. 34: 19-37.  

Ferrer J, Prats C, López D, Vives-Rego J (2009). Mathematical 
modelling methodologies in predictive food microbiology: a SWOT 
analysis Int. J. Food Microbiol. 134: 2-8.  

Ginovart M, López D, Valls J (2002a). INDISIM, an individual-based 
discrete simulation model to study bacterial cultures. J. Theor. Biol. 
214: 305-319.  

Ginovart M, López D, Valls J, Silbert M (2002b). Individual based 
simulations of bacterial growth on agar plates. Physica. A. 305: 604-
618.  

Ginovart M, López D, Valls J, Silbert M (2002c). Simulation modelling of 
bacterial growth in yoghurt. Int. J. Food Microbiol. 73: 415-425.  

Ginovart M, López D, Gras A (2005). Individual-based modelling of 
microbial activity to study mineralization of C and N and nitrification 
process in soil. Nonlinear Anal. Real World Appl. 6: 773-795. 

  
Grimm V (1999). Ten years of individual -based modelling in ecology: 

What have we learned and what could we learn in the future? Ecol. 
Model. 115: 129-148.  

Julià O, Comas J, Vives -Rego J (2000). Second-order functions are the 
simplest correlations between flow cytometric light scatter and 
bacterial diameter. J. Microbiol. Meth. 40: 57-61.  

Julià O, Vives-Rego J (2005). Skew-Laplace distribution in Gram-
negative bacterial axenic cultures: new insights into intrinsic cellular 
heterogeneity. Microbiology 151: 749-755.  

Kreft JU, Booth G, Wimpenny JWT (1998). BacSim, a simulator for 
individual-based modelling of bacterial colony growth. Microbiology 
144: 3275-3287.  

Kreft JU, Picioreanu C, Wimpenny JWT, van Loosdrecht MCM (2001).  
Individual-based modelling of biofilms. Microbiology 147: 2897-2912.  

Lodge RM, Hinshellwood CN (1943). Physicochemical aspects of 
bacterial growth. Part IX. The lag phase of Bact. lactis aerogenes. J. 
Chem. Soc. pp. 213-219.  

López D (1992). Simulació de cultius bacterians. Estudi cinètic i 
termodinàmic. PhD dissertation, Universitat de Barcelona, Spain.  

Prats C, López D, Giró A, Ferrer J, Valls J (2006). Individual-based 
modelling of bacterial cultures to study the microscopic causes of the 
lag phase. J. Theor. Biol. 241: 939-953.  

Prats C, Ferrer J, Giró A, López D, Vives-Rego J (2008). Analysis and 
Individual-based Modelling simulation of the stages in bacterial lag 
phase: basis for an updated definition. J. Theor. Biol. 252: 56-68.  

Rasch M (2004). Experimental design and data collection. In: McKellar RC, 

Lu X (eds) Modeling microbial responses in foods.Boca Raton, CRC 

Press, FL, USA, (ISBN 0-8493-1237-X) pp. 1-20. 
Shapiro HM (2003). Practical flow cytometry, 4th edn. Wiley-Liss, 

Hoboken, New Jersey, USA p. 681.  
Vives-Rego J, Lebaron P, Nebe-von Caron G (2000). Current and future 

applications of flow cytometry in aquatic microbiology. FEMS 
Microbiol. Rev. 24: 429-448.  

Vives-Rego J, Resina O, Comas J, Loren G, Julià O (2003). Statistical 
analysis and biological interpretation of the flow cytometric 
heterogeneity observed in bacterial axenic cultures. J. Microbiol. 
Meth. 53: 43-50.  

Wagensberg J, López D, Valls J (1988). Statistical aspects of biological 
organization. J. Phys. Chem. Solids 49: 695-700. 


