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Cancer which is one of the leading causes of death worldwide is emerging as a serious public health 
problem in Malawi due to the AIDS pandemic. Research has shown that HIV causes the syndrome of 
premature aging and accelerates carcinogenesis. The objective of this study was to describe age at 
cancer diagnosis and to fit the age distribution of childhood and adult cancer diagnosis in Malawi. We 
therefore fitted the normal, gamma, lognormal and inverse Gaussian probability distributions to the data 
for the 1996–2005 period from the Malawi National Cancer Registry and selected the model of best fit 
using the Akaike Information Criterion. Additionally, a finite mixture distribution of lognormals was also 
fitted to the data. According to the analysis for this study, the median ages at diagnosis are at most 42 
years for AIDS-defining cancers and at least 46 years for non-AIDS defining cancers. Furthermore, the 
ages at childhood and adult cancer diagnosis follow lognormal distributions and the distribution of age 
at cancer diagnosis (all cancers) is a finite mixture distribution of lognormals with estimated mixing 
proportions equal to 0.071 and 0.929. The estimated means of the mixture distribution are 5.1 and 45.1 
years and the corresponding estimated standard deviations are 1.211 and 2.842 years. This analysis 
suggests that age at cancer diagnosis in Malawi is relatively low and has a bimodal distribution. 
Therefore, to achieve maximum impact, cancer prevention and control activities should target the 15-50 
year age range. 
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INTRODUCTION 

 
Background 

 
Cancer is one of the leading causes of death worldwide. 
Although cancer can occur at any age, many cancers are 
common among persons advanced in age because aging  
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body systems and body cells are more susceptible to 
mutations that lead to ailments and the malfunctioning of 
some body parts (Breivik 2007; Gidds 2008). Cancer is a 
progressive disease and mortality may therefore be 
prevented if the cancer is detected at an early stage. Early 
detection is achievable through screening and mass public 
awareness. For example, regular screening can reduce 
the risk of breast and cervical cancer mortality. However, 
in low income countries, cancer screening is rare or non-
existent because of financial and 



 
 
 

 

logistical challenges. In Malawi, cancer screening is rare 
because of financial challenges and the fact that attention 
is directed towards the country’s huge burden of 
communicable diseases.  

The age at cancer diagnosis is the age at which a person 
is diagnosed with cancer. The age at diagnosis is “of vital 
consideration for maximizing the benefits of screening 
recommendations, prevention initiatives, and treatment 
strategies” (Karami 2007). Knowledge of the age at cancer 
diagnosis is helpful to policy makers for initiating measures 
for the prevention, control and palliation of cancer. For 
example, if the age at diagnosis of cancer is known, 
planning for screening is easy because the target age 
group is known well in advance. Furthermore, formulating 
cancer prevention strategies and interventions for cancers 
with known etiology is simplified since the knowledge of 
the age at diagnosis will help in approximating the best age 
group to target in order to achieve reasonable impact from 
cancer interventions. Besides, since more cases of cancer 
occur at relatively older ages, if the age at diagnosis of 
such cancers is low, it is easy to imagine the extent of the 
burden of such cancer because the total burden will be the 
sum of those cancers occurring prematurely and the 
cancers occurring at expected older ages.  

Research has shown that the age at cancer diagnosis is 
10 to 20 times younger among persons with HIV as 
compared with the general population (Alshafie 1997; 
Demopoulos 2003; Puoti 2004; Brock 2006 ; Crum-
Cianflone 2010). Studies have also shown that HIV 
infected individuals have an increased risk of some non-
AIDS defining cancers (Long 2008; Patel 2008; Shiels 
2009) In Malawi, where HIV is spread through 
heterosexual contact (National Statistical Office (NSO) 
2010), the AIDS pandemic has increased the incidence of 
cancer and the majority of cancers in Blantyre are AIDS-
defining such as Kaposi’s sarcoma, non-Hodgkin’s 
lymphoma, and eye and cervical cancers.  

The aim of this paper, therefore, is to describe the age 
at cancer diagnosis in Malawi, a low – income country. 
Additionally, we aim to fit the distribution of age at cancer 
diagnosis. The distribution of age at cancer diagnosis will 
be important as a benchmark for fitting serious cancer 
models in the future. 
 

 

MATERIALS AND METHODS 

 
Data 

 
The data were extracted from the Malawi National Cancer 
Registry of Malawi, which is based in Blantyre, Malawi. 
Founded in 1989, the registry collected national cancer 
data until 1992. From 1993, the registry has been 

 
 
 
 

 

population-based for Blantyre residents. A person who has 
lived in Blantyre for at least 6 months is regarded as a 
resident of Blantyre city. For this paper, we analyse cancer 
data for Blantyre for the 1996–2005 period.  

The response variable for this paper is age at diagnosis. 
This was computed from the date of birth of the patient and 
the date of cancer diagnosis. Other variables are year of 
diagnosis, cancer site and gender. The ages are grouped 
into discrete single-age categories with corresponding 
frequencies (see Table 1). Note that cancer site and 
gender are not shown in the table below. 
 

 

Fitting the Probability Distribution 

 
A probability distribution for a random variable Y is said to 
be member of the exponential family if it can be expressed 
as follows: 
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Examples of members of the exponential family are the 
normal, binomial, Poisson, gamma, lognormal and inverse 
Gaussian distributions. Different distributions have 
different numbers of sufficient statistics. The probability 
distribution of members of the exponential family can be 
fitted using Poisson log linear models if the random 
variable can be categorized into a frequency distribution 
with discrete categories (Lindsey 1992; Lindsey 1995).  

Since cancer occurs with different frequencies in 
different age ranges, cancer cases were divided into two 
groups: Children were defined as persons aged less than 
15 years, and adults as persons aged at least 15 years. 
For each group, the normal, lognormal, inverse Gaussian 
and gamma distributions were fitted to the data and 
compared using the Akaike information criterion (Akaike 
1973). The model which provided the best fit was 



 
 
 

 
Table 1. Age at cancer diagnosis in Blantyre, Malawi for 1996-2005  

 
 Children    Adults    

 age count age count age count age count age count 

 0 4 15 30 35 289 55 101 75 30 

 1 49 16 23 36 161 56 67 76 14 

 2 53 17 22 37 116 57 39 77 12 

 3 56 18 44 38 164 58 45 78 15 

 4 60 19 28 39 117 59 24 79 9 

 5 56 20 84 40 335 60 269 80 33 

 6 62 21 61 41 91 61 32 81 11 

 7 50 22 95 42 156 62 45 82 8 

 8 48 23 84 43 83 63 36 83 9 

 9 31 24 101 44 78 64 48 84 11 

 10 38 25 178 45 211 65 101 85 4 

 11 18 26 119 46 81 66 29 86 2 

 12 35 27 137 47 79 67 27 87 4 

 13 26 28 160 48 91 68 35 88 2 

 14 25 29 136 49 55 69 28 89 4 

 Total 611 30 367 50 331 70 156 90 2 

   31 145 51 79 71 15 91 2 

   32 273 52 85 72 34 96 1 

   33 151 53 68 73 13 98 2 

   34 123 54 64 74 14 Total 6428 
 
 

 

selected. The response variable is denoted by Y. To fit the 
probability distribution of age at cancer diagnosis, the data 
were organized into an age distribution with discrete age 
categories. Poisson log-linear models were fitted to the 
frequencies. All sufficient statistics for each candidate 
probability distribution were treated as covariates in the 
models. If the coefficient for a covariate was non-
significant, this was taken as evidence that the 
corresponding distribution did not fit the data. The Poisson 
log-linear models for fitting the normal, gamma, lognormal 
and inverse Gaussian distributions are shown in Table 2 
below.  

Two competing distributions were compared by 
including their sufficient statistics in a model as covariates. 
If one or all of the sufficient statistics for one distribution 
were found to be non-significant, the distribution with 
significant sufficient statistics was chosen as the 
distribution providing a better fit. Gender was added to the 
models in interaction with the sufficient statistics. If the 
coefficient for a sufficient statistic was zero or non-
significant for some categories of gender, this was taken 
as evidence that each gender had different distributions.  

About sixty percent of all cancers in Blantyre are AIDS-
defining. If we had cancer data from a population-based 
HIV follow up study conducted in a certain area in 

 
 

 

Blantyre, that area would have been designated as an 
AIDS population. We would have proceeded to fit that 
population’s age distribution. The age distribution of the 
AIDS population would have been compared to the age 
distribution of the general Blantyre population to see if the 
two distributions differ. Since we only have cancer data 
from the whole Blantyre population without the HIV status 
of each patient, this is not possible. However, since the 30-
34 year age range is associated with a high prevalence of 
HIV in Malawi, we would expect the fitted age distribution 
to have a mode close to this age range. Since cancer 
occurs at older ages, if the age distribution of cancer is 
more skewed to the right, this would imply that cancers are 
occurring at younger ages. For the current analysis, we 
assume a constant age distribution for the population of 
Blantyre for the 1996-2005 period. This assumption is 
tenable if one closely examines the population forecasts of 
Blantyre for the same period on the NSO website. 
 

 

Normal Mixture Model 

 

The most common finite mixture distribution is the finite 
mixture distribution of univariate normal distributions 
(Rabe-Hesketh 2007) given by the following equation: 



 
 
 

 
Table 2. Examples of sufficient statistics of selected members of the exponential family and the corresponding 
Poisson models  

 
Distribution Sufficient Statistic Offset Corresponding Poisson Model 

 

Normal Yi,Yi
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Source: Lindsey (1995) 
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years for men and at most 42 years for women. For non-
AIDS defining cancers, the median ages at diagnosis are 
at least 46 years for both men and women. 

 

g  y,  ,   is the normal density with mean  and 

standard deviation  , and 

p1, p2,…, pk are mixing proportions whose sum is 1.  
A two-component normal mixture model is a special 

case (where k=2) given by 

f  y   p.g y,  ,  1
2   1 − p .g y,  ,  2

2 . 
 

Because a priori exploratory analyses revealed that the 
distribution of data in each group was skewed, the data 
were log-transformed to normality. A finite mixture model 
was fitted to the log-transformed data using the alldist 
function in the npmlreg package in R (Einbeck 2009). Two 
finite mixture models, one with two components, and one 
with three, were fitted, The components of each fitted 
mixture distribution were assumed to have a common 
variance. The difference between the disparities of the two 
models was computed. A likelihood ratio test of the change 
in disparity was conducted to determine the number of 
components to be retained. The level of significance for all 
statistical tests was 5%. 
 

 

RESULTS 

 
Descriptive statistics 

 

For the 1996-2005 period there was a total of 7904 cases 
of cancer of which 862 (10.9%) had missing ages and so 
were excluded from the analyses. 611 (7.7%) were 
childhood cancer cases and 7293 (92.3%) were adult 
cancer cases. The median ages at cancer diagnosis were 
lower for AIDS-defining cancers than for non AIDS – 
defining cancers (see Table 3 below). The median ages at 
diagnosis of all AIDS-defining cancers are at most 40 

 
 
Fitted Distributions for Childhood and Adult Cancers 

 
The distribution of age at cancer diagnosis was skewed 
and was bimodal (Figure 1). The median ages at childhood 
and adult cancer diagnosis are 6 and 40 years 
respectively.  

For all the distributions fitted to childhood and adult 
cancer data, the coefficients for sex were found to be non-
significant. The models fitted to age at diagnosis of 
childhood cancer using the normal, gamma, inverse 
Gaussian and lognormal distributions had AIC’s of 100.1, 
97.6, 104.1 and 99.6 respectively. The AIC’s of the normal 
and inverse Gaussian models show that the fits were poor, 
and the AIC’s of the gamma and lognormal distributions 
show that the fits were good. A comparison of the gamma 
and lognormal models yielded inconclusive results as the 
sufficient statistics for both distributions were not 
significant. Furthermore, the difference between the 
deviances of the lognormal and gamma models was small 
(0.552), therefore a Chi-square test was not necessary. 
Our conclusion is that both the gamma and lognormal 
distributions provided good fits to the data for age at 
childhood cancer diagnosis. The data and the lognormal 
distribution are plotted in the left panel of Figure 2.  

Similarly, for all the distributions fitted to age at adult 
cancer diagnosis, the coefficients for sex were found to be 
non-significant. The models fitted to age at adult cancer 
diagnosis using the normal, gamma, inverse Gaussian and 
lognormal distributions had AIC’s of 907.3, 710.2, 674.7 
and 661.4 respectively. The data and the lognormal 
distribution are plotted in the right panel of Figure 2. 



 
 
 

 
Table 3. Median age at cancer diagnosis for selected cancers  

 
 Group Age at diagnosis(years) 
 Boys Median age Minimum age Maximum age 
 AIDS-defining cancers    

 Kaposi sarcoma 9 1 14 
 Eye 2 1 8 
 NonHodgkin lymphoma 6 0 14 

 Girls    
 AIDS-defining cancers    

 Kaposi sarcoma 7.5 1 14 
 Eye 2 1 12 
 NonHodgkin lymphoma 6 0 14 

 Men    
 AIDS-defining cancers    

 Kaposi sarcoma 35 15 85 
 Eye 35 15 70 
 NonHodgkin lymphoma 40 15 83 

 non_AIDS-defining    
 Oesophageal 52 20 91 
 Others 52 15 98 

 Women    
 AIDS-defining cancers    

 Kaposi sarcoma 30 15 77 
 Eye 35 15 68 
 NonHodgkin lymphoma 35 15 78 
 Cervical 42 18 80 

 non_AIDS-defining    
 Oesophageal 50 20 96 
 Breast 46 15 83 
 Others 46 15 90 
 All cancers combined 48 15 96 

 
 
 

 

Figure 2 shows that the fit was good for each model. 
From the right panel it can be seen that most of the cancers 
occurred in adults aged between 20 and 50 years. This age 
range envelopes the 30-34 year age range associated with 
a high HIV prevalence in Malawi. 
 

 

Fitted Finite Mixture Model 

 

Two finite mixture models with two and three components 
were fitted. The disparity of the two-component model was 
45806.18 and that of the three-component model was 
45806.19. The difference between the disparities of the 
two models is approximately equal to zero, showing that 
the two-component mixture model fits the log-transformed 
data well. The estimated parameters of the  
two-component normal mixture model are 
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Figure 1. Histogram of all ages at cancer diagnosis  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Fitted lognormal distributions 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Estimated finite mixture distribution of time to cancer diagnosis 
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, in general. The finite lognormal mixture distribution with 
two components (+++) is super-imposed on the histogram 
of the data in Figure 3 Above. 
 

 

DISCUSSION 

 

Our findings show that the time to both childhood and adult 
cancer diagnosis is skewed and has a lognormal 
distribution. Furthermore, the age at diagnosis for AIDS-
defining cancers is relatively lower than that of non-AIDS 
defining cancers. The distribution of the age at diagnosis 
of cancer is a finite mixture of two lognormal components. 
This is a mixture of the lognormal distributions for the age 
at diagnosis of paediatric and adult cancers.  

Meredith et al. (2010) also fitted age at cancer diagnosis 
distributions(Meredith 2010) but their analysis 

 
 
 

 

is slightly different from ours in that they had cancer cases 
from a defined AIDS population and so were able to 
compare the distribution of the age at cancer diagnosis of 
that AIDS population with that of the general population. 
They also corrected for differences between the age 
structures of the AIDS and general populations. We only 
have cancer data from the Malawi Cancer Registry but we 
have no information on the HIV status of the cancer 
patients. Therefore, unlike Meredith et. al.(2010), we don’t 
have another age distribution which would act as a basis 
for comparison. Our cancer incidence data is from the 
general Blantyre population. Nevertheless, our 
assumption of a constant population age structure 
between 1996 and 2005 is adequate. Besides, our 
approaches to fitting the age at diagnosis distributions are 
standard parametric methods and so more accurate for 
drawing inferences for our purposes than the crude 
descriptive approaches by Meredith et al. (2010) (Meredith 
2010).  

The majority of childhood cancers in Malawi are 
lymphomas, especially Burkitt’s lymphoma (Banda 1999), 
which is very common among children in Malawi. The total 
number of cases of non-Hodgkin’s lymphoma from the 
childhood cancer case series for 1967–1976, 1985– 1993 
and 1991–1995 were 187, 472 and 283 respectively, and 
of these 64.7%, 78.0% and 70.3% were 



 
 
 

 

Burkitt’s lymphoma (Parkin 2003). There is an overlap 
between the modal age range (5-9 years) for childhood 
cancer as reported by Mukiibi et. al. (1995) (Mukiibi, Banda 
et al. 1995) and our modal age range (about 2-9 years) 
inferred from the fitted distribution of age at diagnosis. 
Besides lymphomas, Kaposi sarcoma is the second most 
frequent cancer in Malawian children (Banda, Parkin et al. 
2001).  

The majority of adult cancers in Blantyre are AIDS-
defining cancers (Misiri H, Dzamalala,C., Edriss,A.K., 
Parkin,D.M., Bray,F submitted). The observed median 
ages of all AIDS-defining cancers were in the 
neighbourhood of the 30-34 year age group. This coupled 
with the fact that most adult cancers occurred between the 
ages of 20 and 50 years support the observation that most 
of the adult cancers are HIV-related since the 20-50 age 
range envelopes the 30-34 year age range associated with 
a high prevalence of HIV in Malawi. Naturally, if human 
beings live long enough, they are bound to suffer from 
cancer (Breivik 2007). Furthermore, the life expectancy in 
Malawi is lower than 55 years. Therefore, only few people 
live beyond 55 years and a small percentage of these 
suffers from cancer. This explains why the fitted age 
distribution had a sharp decline in the proportion of cancer 
cases from the age of about 50 years up to 100 years. This 
also explains why the median ages at cancer diagnosis for 
non-AIDS defining cancers were above 46 years. 
 

 

CONCLUSION 

 

In Blantyre, age at cancer diagnosis for AIDS-defining 
cancers is relatively lower and has a bimodal distribution. 
For the public to optimally benefit from cancer prevention 
and control activities like screening, mass awareness, 
treatment and palliation, planning for these activities 
should take into account the age structure of the 
population. In particular, cancer prevention and control 
activities should target the 15-50 year age range. 
 

 

Limitations 

 

The major limitation of our findings is the quality of the 
cancer data analysed for this paper. For about 10% of the 
patients, ages at cancer diagnosis were unknown. 
Besides, there is a problem of incomplete case 
ascertainment or morphological verification in Malawi 
(Banda 1999). This implies that not all recorded cases of 
cancer are genuine cancer. In addition to this, not all cases 
of cancer in Blantyre are recorded by the registry due to 
logistical and financial challenges. For example, currently 
the registry has no premises of its own. This is a restriction 
on the amount cancer data the registry can 

 
 
 
 

 

collect because this lack of office space affects data 
collection and archiving. 
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