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To solve the unfixed grasping tasks during the fruits picking and rating, grasping modeling is researched as the 
most important part of the robot hand solutions. A survey for grasping synthesis method with dexterous robot 
hand is presented in this paper. The difference of grasping characters is introduced between dexterous hand and 
underactuated hand. Especially, the feature of self-adaptive enveloping grasp achieved by underactuated finger 
mechanism is outlined, which has good performance in grasping unknown objects. In order to generate valid 
grasps for unknown target objects and apply in real-time control system for underactuated robot hand, a grasping 
strategy synthesis model for universal grasp tasks is proposed based on human knowledge analysis. It is 
composed by off-line neural networks training section and on-line compute section. Firstly, daily grasped objects 
are used to build a sample space by human experience. Then the discrete sample space is computed by fuzzy 
clustering method. The data is used to generate grasp decision scheme by rough set mixed artificial neural 
networks. An examination is simulated for grasp configurations choice of the underactuated robot hand with the 
aim to show the practical feasibility of the proposed grasp strategy. 
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INTRODUCTION 

 
China possesses the whole world’s 21% fruit growing area, 
and with a total output of more than 180 million tons, but the 
fruit-picking mainly rely on human powers, since there’s not 
any appropriate machinery in the market. The main reasons 
for the absence of the appropriate machinery in the market, 
is due to the technology requirements in fruit-picking process 
is very high, especially the grasping robot should be reliable 
and will not damage fruit. With the more and more prominent 
problems of labor costs rising and labor shortages, it’s 
extremely imperative to adapt machinery in fruit-picking. 
and characteristics of a variety of fruits and vegetables 
picking robot’s end-effectors, which put forward that 
under actuated multi-fingered hand is an ideal fruit and 
vegetable picking robot’s general-purposed end-effectors; 
One of the most important part is to solve the robot 
hand’s grasping problem, at the same time the robot  
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hand can also be used for picking fruit of different shape, 
and the after process treatment such fruit grading in different 
picking tasks. Targeting fruit grasping problem, Song et al. 
(2006) introduces the study result of some typical picking 
robot both in domestic and oversea, which indicate that the 
studying of picking robot not only has great practical value, 
but also has profound theoretical significance; Li et al. 

(2008) analyzes the studying statusand characteristics of 
a variety of fruits and vegetables picking robot’s end-
effectors, which put forward that under actuated multi-
fingered hand is an ideal fruit and vegetable picking 
robot’s general-purposed end-effectors; Cai et al. (2009) 
targets the real time path planning problem of citrus 
picking robot in dynamic and unstructured environment, 
make use of the BL-PRM algorithm, have simulated test 
of citrus picking under both the condition of picking 
exposed and overlapped fruits; Yang et al. (2010) 
designs an apple picking’s end-effectors, based on the 
flexible pneumatic actuator, which can grasp and hold 
well the apples with good flexibility; Yuan et al. (2009) 
transfers the apple-picking path’s planning problem into 



 
 
 

 

three dimensional “travel salesman problem”, combined 
the apple position characteristics obtained through image 
processing, put forward the improved ant colony 
algorithm based on the adaptive update pheromone of 
finite field. The core issue is grasp programming.  

As multi-fingered robotic dexterous hand has been 
proposed since 70s last century, the design, analysis and 
control of such hands has become an active area of 
research. Many studies focus on the issues of strategy 
and planning for target objects grasp. It refers to some 
aspects such as grasping mode choice, grasping position 
planning for fingers and palm, contacting point selection, 
kinematic and torque computation for each joint, 
operation and stability. Researching works are 
undertaken from different views in order to analysis grasp 
planning and establish grasp strategy models. Geometry 
method is an initial solution to build grasp strategy model 
which is based on the theory of form-closure and force-
closure. Nguyen (1988) presented a simple algorithm for 
directly constructing force-closure grasps based on the 
shape of the grasped object. An efficient algorithm for  
synthesizing grasp is reported for bounded 
polyhedral/polygonal objects (Mishra et al., 1987). Ponce 
and Sullivan (1997) addressed the problem of computing 
stable grasps of three-dimensional polyhedral objects. An 
algorithm for computing all placements of frictionless 
grasping point fingers is proposed (Stappen et al., 2000). 
The algorithm translated grasping problem into geometric 
searching problems. Thus, the solving process may be 
complex and mass computation.  

A sufficient and necessary condition to achieve form-
closure grasp is demonstrated for multi-fingered robot 
hand (Liu et al., 1999). An improved approach is reported 
by using a ray-shooting algorithm to test force-closure for 
3D frictional grasp (Zheng and Qian, 2005). Optimum 
function is also used for grasp synthesis analysis for 
multi-fingered robot hand. First of all, there should be an 
evaluation function as the optimal criterion. The function 
is translated from some grasping capability items such as 
manipulating space, grasp forces and torque, grasp 
stability. The results for grasping parameter can be 
calculated when optimum criterion reach the maximum or 
minimum solution. A task-oriented quality measure is 
proposed for evaluating grasp by computing the minimum 
singular value for the grasping matrix (Li and Sastry, 
1988). Stable grip and form-closure optimum problem is 
formulated and solved (Markenscoff and Papadimitriou, 
1989). A unit contact forces for multi-finger grasp is 
researched (Kirkpatrick et al., 1992). An optimality 
criterion based on decoupled wrenches is presented 
(Mirtich and Canny, 1994), in which the algorithms for 
achieving force-closure grasps of 2-D and 3-D objects are 
developed. Two general optimality criteria that consider 
the total finger force and the maximum finger force are 
introduced and discussed (Ferrari and Canny, 1992). An 
approach is reported to quantify the effectiveness of  
compliant grasps and fixtures of  an  object;  a  stiffness 

 
 
 
 

 

quality measure is defined and used as an optimal 
criterion (Lin, 2000).  

A general algorithm, which is composed by two 
computing phases is presented (Zheng and Qian, 2005) 
for optimum dynamic force distribution in multi-fingered 
grasping. The considerations based on optimum function 
for grasp synthesis are focused on optimum evaluation. 
However, it is complex to provide a formulation and 
quantification evaluation function in a multi-contact grasp 
system. In addition, the optimality iterative process also 
needs mass computation to converge, thus it is difficult to 
apply in a real time control system. In fact, the target 
objects are multivariable depending on different shapes, 
grasping tasks and environment. It is complicated to 
translate and formulate a mathematical model by physical 
analyzing. Thus the hand system usually can not be 
programmed for universal grasp tasks before grasping 
operation. In this paper, a new grasp planning analysis 
based on human knowledge is proposed for modeling 
grasp strategy for underactuated multi-fingered robot 
hand. The underactuated finger mechanism is able to 
perform a human-like grasping operation and it has ability 
of passive compliance self-adaptation to grasp objects of 
a large variety in size and shape. In particular, the 
proposed grasp strategy model is built by rough set 
mixed artificial neural networks.  

The specific characters of the grasp strategy model are 
rapid calculation speed and high accuracy rate in grasp 
choice taxonomy and can be used for universal grasp 
tasks. 

 

GRASP STRATEGY BASED ON HUMAN 
KNOWLEDGE 
 

A human hand can grasp one target object with different 
types of configurations. That would lead to different 
grasping stability and dexterity. The rule of grasp 
configuration choice for a human is daily experience or 
intelligence consideration before grasp action. For 
example, a human hand can use two or three finger tips 
to pinch a hammer handle, but it is easy to slide off. 
However, it will be stable if the whole hand fingers and 
palm envelope it together. Thus, it can be concluded that 
human experience and artificial intelligence is the basic 
for a robot hand grasp planning and grasp strategy 
modeling based on human knowledge. The grasp 
strategy based on human knowledge for multi-fingered 
robot hand grasp synthesis is developed in recent years. 
Some simplification and assumptions is proposed 
(Cutkosky, 1989), which are applied in manufacturing 
environment for robotic hands grasp tasks. A knowledge-
based approach for robotic hand grasping unknown 
objects is described (Stansfield, 1991). A compact set of 
heuristics expert system is used to generate valid grasps 
for the unknown objects with a desired configuration. The 
issue of developing grasping controller composed by a 
knowledge framework and a pre-imaging system is 
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Figure 1. Three kinds of finger mechanisms for underactuated robot hand. 
 

 

discussed (Coelho and Grupen, 1994).  
A grasp synthesis algorithm is introduced (Pollard, 

1996). The expert system can generalize application 
instances by many prepared grasp prototypes. A grasp 
strategy can be generated for a specific grasp task. The 
relationship among grasp task, object geometry and 
grasp choice are analyzed and reported (Cutkosky and 
Wright, 1986). In retrospect, a grasping strategy 
synthesis model is used to establish the relationship 
between target objects and grasp configuration choice. 
The grasp synthesis based on human knowledge can be 
carried out when a target object’s characteristics of shape 
and grasp task is known. It would be applied in a real-
time control system with three necessary characters: 

 

a) Robot hands can achieve some stable grasp 
configurations.  
b) The experiences of human knowledge can be studied 
as an artificial intelligence to build a grasp strategy 
synthesis model.  
c) The grasp strategy synthesis model has the character 
of rapid calculation speed. 
 

 

GRASP TAXONOMY FOR UNDERACTUATED MULTI-
FINGERED ROBOT HAND 

 

A dexterous robot hand has the same number with 
actuators and DOFs (degree of freedoms). The torque or 
rotation motion of each joint can be controlled. 
Underactuated finger mechanism is designed with a 
reduced number of DOFs and actuators. It can be built 
with low-cost and easy-operation features for applications 

 
 

 

in robot hand. In addition, an underactuated finger 
mechanism in robot hand can perform stable grasps by 
using enveloped configuration. Ceccarelli et al. (2006) 
has presented design considerations and structure 
scheme of finger mechanism for underactuated grasp. 
Some linkage underactuated finger mechanisms are 
proposed (Yao et al., 2008) as shown in Figure 1. The 
design problems and grasp simulation was undertaken 
(Yao et al., 2008) for these mechanisms. It can be shown 
from the grasp simulation that the proposed 
underactuated robot finger mechanisms have the 
features of self-adaptive and enveloping grasp with 
different shapes and size objects, in spite of the objects’ 
characters are uncertain and complicated to describe in 
formulation, as shown in Figure 2.  

The joint motion limitation can be designed in each 
phalanx. The finger mechanisms can transmit torque from 
the finger root when the joints reach limit position. It is 
used to ensure the pinch operation with the finger tips. 
Thus, underactuated robot finger mechanisms can be put 
into practice as an approach to due with the unknown 
universal grasps tasks. As shown in Figure 2, fingers 1 
and 2 are symmetrically assembled in the palm, a 
straight-teeth gear system is located under the palm. 
Finger 3 is thumb, whose position is fixed. The position of 
fingers 1 and 2 can be changed within a circular track 
around the palm central. The prototype of the proposed 
underactuated multi-fingered robot hand is shown in 
Figure 4. The hand system is composed by three fingers. 
It can be concluded from Figures 3 and 4 that the 
proposed hand system has three possible working 
positions to achieve different grasp configurations, which 
are listed and explained. 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Grasp simulation of underactuated robot finger with the 
mechanism in Figure 1a.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Gear system for finger positions adjusting in palm. 

 
 

 

Position 1 

 
Fingers 2 and 3 opposite with finger 1, as shown in 
Figure 4a. 
 
 
Position 2 
 
Three fingers centripetal, as shown in Figure 4b. 
 
 
Position 3 

 
Fingers 2 and 3 parallel, finger 1 is free, as shown in 
Figure 4c. 

 
 
 

 

Position 4 

 

Three fingers parallel in one side, as shown in Figure 4d. 
Thus, there are six grasp configurations which are 
described in Figure 5. The types of the grasp 
configurations are associated with the common situations 
for human grasp tasks in daily life. They can be explained 
in details as: 
 

 

Configuration 1 

 
Three finger parallel pinch, shown in Figure 5a. Fingers 2 
and 3 are parallel and finger 1 located on the other side 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. The proposed hand prototype with different finger positions: a) Fingers 2 and 3 
opposite with finger 1; b) three fingers centripetal; c) fingers 2 and 3 parallel, finger 1 is free; 
d) three fingers parallel in one side.  

 
 
 
 
 
 
 
 
 
 

 
Figure 5. Grasp configurations: a) three fingers parallel pinch; b) three fingers cylindrical 
envelop; c) three fingers centripetal pinch; e) three fingers centripetal envelop; e) two 
fingers parallel pinch; f) three fingers parallel pull. 

 

 

of the target object. Finger tips are used to pinch small 
long objects. This configuration is derived from position 1. 
For example, pinch pencil to write. 
 

 

Configuration 2 

 

Three fingers parallel envelop, shown as Figure 5b). 
Fingers 2 and 3 are parallel and finger 1 located on the 
other side to envelop big cylinder objects, while finger 
phalanxes are all contact with object. This configuration is 
also derived from position 1. For example, envelop grasp 
a bottle of beer. 
 
 

Configuration 3 

 

Three fingers centripetal pinch, shown in Figure 5c. 
Fingers 1, 2 and 3 are located central symmetric on the 
palm. Three finger tips are used to pinch small spherical 
objects or small regular polyhedron objects. This 
configuration is derived from position 2. For example, 
grasp a golf ball. 
 

 

Configuration 4 

 

Three fingers centripetal envelop, as shown in Figure  5d. 

 
 

 

Fingers 1, 2 and 3 are located central symmetric on the 
palm to envelop some spherical objects while finger 
phalanxes are all contact with object. This configuration is 
also derived from position 2. For example, grasp an 
apple. 
 

 

Configuration 5 

 

Two fingers centripetal pinch, shown as Figure 5e). 
Fingers 2 and 3 pinch very small object and finger 1 is 
free. This configuration is derived from position 3. For 
example, grasp a pill or a coin. 

 

Configuration 6 

 

Three fingers parallel pull in one side, shown as Figure 
5f). Three fingers are parallel at the same side of the 
object. Finger tips are used to pull small long objects. 
This configuration is derived from position 4. For 
example, pull handles to open a door. The purpose of 
taxonomy for the grasp configurations is used to describe 
the grasp choice for grasp planning and the strategy 
modeling. The relationship between grasp choice and 
target objects character on shape and size will be built 
based on the taxonomy. It should be clarified that the 
grasp configurations taxonomy in this paper is applied for 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6. Gras strategy modeling for different tasks. 
 

 

the proposed underactuated multi-fingered robot hand. 
Because the grasp configuration is decided by the finger 
position and the underactuated finger mechanism as 
designed. 
 

 

GRASP PLANNING MODELING BASED ON 
ARTIFICIAL NEURAL NETWORKS 

 

Modeling algorithm with human grasp knowledge 

 

A real human hand can grasp a wide range of objects 
stably because of its experience and skill in adapting 
object shape and size. Intelligence human hand can 
consider their experience to generate a suitable grasp 
strategy according to the objects, environment and tasks. 
Three algorithms for model grasp strategy have been 
mentioned (Zhang et al., 2007). They are Gaussian 
mixture model, support vector machine and artificial 
neural networks, respectively. The advantages and 
weaknesses of these modeling algorithms have also 
been discussed. Rough set theory was firstly presented 
by Skowron and Rauszer (1982), and can be applied for 
information processing. It has been proven that rough set 
theory is an effective approach to analyze imprecise, 
confused or fragmented data sets. Thus, rough set is 
considered as a mathematical method for data reasoning, 
which can be used in the field of knowledge acquisition, 
decision analysis, forecasting, expert systems, probability 
estimation and knowledge discovery. Because the 
complemented relative between rough set theory and 
other mathematical method such as artificial neural 
networks or fuzzy theory. It has possibility to mix the 
rough set theory with artificial neural networks or fuzzy 
set theory and generate a new analysis algorithm artificial 
neural networks algorithm is provided in this paper to 
solve the uncertainty decision analysis for grasp strategy 

 
 

 

modeling of the underactuated robot hand. The grasp 
strategy modeling can be easily described as Figure 6.  

The grasp strategy modeling procedure is shown in 
Figure 7. It is composed by three sections, which are data 
preprocess section, rough set mixed artificial neural 
networks section and motor control section, respectively. 
The first section of the modeling procedure is to describe 
and classify objects into different types by taxonomy. The 
proposed rough set method is applied to process attribute 
parameters for objects. First of all, some shape and size 
characteristics of the sample objects should be obtained. 
Then the attributes concerned with obtained size and 
shapes characteristics is extracted from the sample 
objects. Then, the extracted attribute parameters are 
classified into different types and each type of the object 
has the similar shape and size. Fuzzy clustering method 
(FCM) is used as a taxonomy which can class 
assignment continuous data by their features. The 
second section of the modeling procedure is to train 
grasp strategy networks off-line and generate grasp 
strategy networks on-line. Each type of objects classified 
in section one represents a kind of object which 
corresponds to a grasp strategy. The grasp strategy 
decision scheme for all types of sample objects can be 
built by considering human experience and knowledge. 
The generated scheme will be used for artificial neural 
networks training. However, the scheme contains the 
whole characteristics of the sample objects, the mass 
data will result the neural networks become complicated 
and low efficiency. Thus, there should be a simplification 
calculation by using rough set analysis method to get a 
brief grasp strategy scheme. Then the simplified scheme 
can be trained by off-line neural networks. 
 

In this paper three neural networks are proposed with 
the aim to show training effect. They are PB neural 
networks, RBF neural networks and possibility neural 
(Walczak and Massart, 1999). Thus, a rough set mixed 
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Figure 7. A flowchart for the proposed grasp strategy modeling procedure. 

 

 

networks, respectively. When a grasp task is ordered, the 
attributes will be extracted from target object and 
computed as independent variable for the on-line neural 
networks. Then a grasp strategy will generate to 
predicate the grasp configuration for the target object in a 
real-control system. The function of last section is to 

 
 

 

control and actuate motors in the hand system. The three 
fingers will be adjusted into appropriate positions at first 
after a grasp configuration generated. Then the motors 
actuate finger mechanisms to grasp object and complete 
the grasp task. If the task can not be finished, the system 
will extract attribute parameters again from the target 



 
 
 

 

object and generate a new grasp strategy. 
 

 

Objects description and data preprocess 

 

A space which contains a large number of target objects 
is built and defined as objects space. The objects space 
is composed by 251 common instances in daily grasp 
task for human life, and can be denoted as U, and each 

of the object instance can be defined as ui (I = 1,…251). 

The attribute parameters of the sample objects are 
extracted from five aspects which composed an attribute 
parameters space. These characteristics will decide the 
grasp strategy and can be obtained by robot vision 
recognition system. It also can be obtained by other 
methods, but we only focus on the issue of grasp strategy 
modeling in this paper. The five attribute parameters are 
concerned with size, shape, weight, volume, revolving 
body and surrounding space. Thus, an attribute space 
can be defined as A, it includes five attribute parameters 
for the 251 common instances, which can be expressed 

as ai (I = 1,…5). First of all, each instance Ui was 

approximately described as a cube. The cube is decided 
by three parameters which are length, width and height. 
Thus, the five attribute parameters can be described as: 
 

i) a1: The three dimension features of the approximate 
cube;  
ii) a2: The weight of the sample objects; 

iii) a3: The volume of the sample objects; 
iv) a4: If the sample objects have rotative surface or not; 

v) a5: If the sample objects have enough surrounding 
space or not. 
 

Because a1, a2 and a3 are continuous data which can not 
be processed in the rough set mixed neural networks. 
There should be a preprocess operation to divide them 
into different types by their features. Thus, a fuzzy 
clustering method is used for classification assignment. 

Fuzzy clustering method is used to classify a1 into three 

types by considering the three dimension variables, a2 

and a3 are also classified in the same way into three 

types, respectively. The parameters of a4 and a5 are 
discontinuous data which will show the possibility for 
envelop grasp or pull. Thus, these classified attribute 
parameters can be transformed into digital format and 
described as: 
 

i) a1: (0, 1, 2) to express (slender, medium and flat) 
attribute for an object according to three dimensions.  
ii) a2: (0, 1, 2) to express (heavy, medium and light) 
attribute for an object according to weight;  
iii) a3: (0, 1, 2) to express (large, medium and small) 
attribute for an object according to volume;  
iv) a4: (0, 1) to express (non-rotative and rotative) 
attribute for an object according to its body surface;  
v) a5: (0, 1)  to  express  (without  and  with)  surrounding 

 
 
 
 

 

space for an object. For example, an object located in 
corner usually has no surrounding space. 
 

 

Generate and simplify grasp strategy decision 
scheme 

 

There should be a grasp decision space which can 
describe final grasp configurations in the strategy 
modeling algorithm. Grasp decision space can be 
denoted as D. Because the proposed robot hand has six 
grasp configurations, the grasp decision space contains 

six parameters which are defined as di (I = 1,…6). In 
order to compute in the rough set mixed neural networks, 
each of the decision should be converted into digital 
format as: 
 

i) d1 = 1: Three finger parallel pinch; 

ii) d2 = 2: Three fingers parallel envelop; 
iii) d3 = 3: Three fingers centripetal pinch; 
iv) d4 = 4: Three fingers centripetal envelop; 
v) d5 = 5: Two fingers centripetal pinch; 
vi) d6 = 6: Three fingers parallel pull. 

 
Then the objects space U is separated into two parts 
which are U1 and U2. U1 contains 200 sample objects,  
U1= (u1,…u200) which is used for neural networks training 
and to generate grasp decision scheme; U2 contains the 
other 51 sample objects of the objects space U, U2=  
(u201,…u251) which is used for the grasp strategy 
examination with the neural networks. The grasp decision  
scheme for 200 sample objects ui (I = 1,…200) can be 
built by considering human experience and knowledge, 

each of them contains 6 attribute parameters ai (1 = 

1,…6) and a decision parameter di. Because of the mass 
of data, the neural networks will be complicated and the 
calculation efficiency will be reduced. Thus, redundant 
samples which have the same attribute parameters and 
grasp decision should be combined and can be 
considered as a type of target object. The simplified 
decision scheme is composed by 34 types of samples 

(u1,…,u34) which include most common objects in daily 
life and is listed in Table 1.  

The obtained simplified grasp decision scheme in Table 1 
can be far-simplified with the aim to delete the redundant 
attribute parameters according to the rough set theory. Thus, 
an algorithm is proposed which can keep each grasp 
strategy independent by searching and removing some 
redundant attribute parameters. The brief grasp decision 
scheme is listed in Table 2, in which the minimum form of 

the attribute space is obtained as (a1, a2, a3, a5) and the 

redundant attribute parameter a4 has been removed. 

Comparing with Table 1, the sample attribute parameters in 
far-simplified decision scheme are less than before, but the 
strategy decisions are not affected. Some of the redundant 

strategies are combined, such as (u4, u28), (u6, u26), (u7, 

u10, u22), (u13, u25) and (u15, 



 
 
 

 
Table 1. Simplified grasp strategy decision scheme.  

 
 

Samples (ui) 
  Attribute parameter   

Decision (di) 
 

 

a1 a2 a3 a4 a5 
 

   
 

 1 0 1 2 1 0 4 
 

 2 0 0 0 0 0 1 
 

 3 0 1 1 0 0 3 
 

 4 1 1 0 0 0 2 
 

 5 1 2 0 1 0 5 
 

 6 0 2 0 1 0 4 
 

 7 2 0 2 1 1 4 
 

 8 1 0 2 0 1 1 
 

 9 0 0 2 0 0 3 
 

 10 2 1 2 0 0 4 
 

 11 0 0 1 0 0 1 
 

 12 2 1 0 0 0 4 
 

 13 1 2 1 0 0 5 
 

 14 0 0 2 0 1 3 
 

 15 1 1 0 1 0 2 
 

 16 1 0 1 0 0 1 
 

 17 0 1 0 0 0 3 
 

 18 0 1 2 0 1 4 
 

 19 0 2 2 0 0 4 
 

 20 1 2 2 1 0 5 
 

 21 2 0 1 0 1 6 
 

 22 1 2 0 1 1 5 
 

 23 0 2 0 0 0 4 
 

 24 2 2 1 0 0 4 
 

 25 0 0 1 0 1 6 
 

 26 0 1 1 1 0 3 
 

 27 1 0 0 0 0 1 
 

 28 0 1 0 0 0 3 
 

 29 1 1 1 0 0 5 
 

 30 2 0 1 0 0 3 
 

 31 2 0 0 0 1 6 
 

 32 1 0 1 0 1 1 
 

 33 1 0 1 0 0 1 
 

 34 0 2 1 0 0 4 
 

 

 

u17). Table 2 is much brief and suitable for neural 
networks training. 
 

 

Neural networks training and examination 

 

The obtained far-simplified grasp strategy scheme can be 
used for artificial neural networks training. In this paper, 
three neural networks methods are presented which are 
BP neural networks, RBF neural networks and possibility 
neural networks, respectively. The model of BP networks 
is 3-layer feed forward neural network. Hidden layer is 

 

 

composed by 7 neurons and hyperbolic tangent function. 
Conjugate gradient algorithm is applied for networks 
training. The function in RBF neural networks is designed 
by using Gaussian function and the neurons can be 
added automatically by considering the mean-squared 
error of the networks’ output. The training work will be 
finished until the output error meets requirement. 
Possibility neural networks were appropriate method 
applied in taxonomy as reported in 0. It has the feature of 
fast calculate speed and better generalization 
performance. Thus, it can be used as a method for the 
grasp strategy modeling. The far-simplified grasp strategy 



 
 
 

 
Table 2. Far-simplified grasp strategy decision scheme.  

 

Samples (ui) 
 Attribute parameter  

Decision (di) 
 

a1 a2 a3 a5 
 

  
 

1 0 1 2 0 4 
 

2 0 0 0 0 1 
 

3, 26 0 1 1 0 3 
 

4, 15 1 1 0 0 2 
 

5 1 2 0 0 5 
 

6, 23 0 2 0 0 4 
 

7 2 0 2 1 4 
 

8 1 0 2 1 1 
 

9 0 0 2 0 3 
 

10 2 1 2 0 4 
 

11 0 0 1 0 1 
 

12 2 1 0 0 4 
 

13 1 2 1 0 5 
 

14 0 0 2 1 3 
 

16, 32, 33 1 0 1 1 1 
 

17, 28 0 1 0 0 3 
 

18 0 1 2 1 4 
 

19 0 2 2 0 4 
 

20 1 2 2 0 5 
 

21 2 0 1 1 6 
 

22 1 2 0 1 5 
 

24 2 2 1 0 4 
 

25 0 0 1 1 6 
 

27 1 0 0 0 1 
 

29 1 1 1 0 5 
 

30 2 0 1 0 3 
 

31 2 0 0 1 6 
 

34 0 2 1 0 4 
 

 

 

 95   
 

 90   
 

(%
) 85   

 

   
 

 80   
 

 75   
 

 70   
 

 BP RBF PNN 
  

 
Figure 8. Computational results comparison of the three rough 
set mixed artificial neural networks. 

 

 

decision listed in Table 2 is used as sample for the rough 
set mixed neural networks training. Then, the attribute 

parameters in the other object space U2 can be 
extracted. The compute results used for examination of 
the proposed algorithm by comparing with the grasp 
strategy decision scheme in Table 2. The computation 
result of the three rough set mixed neural networks is 
illustrated in Figure 8 and Table 3.  

As shown in Figure 8 the proposed grasp strategy 
modeling based on three types of rough set mixed neural 
networks have a good computation results, the accuracy 
rate are all higher than 84%. Especially the modeling 
based on rough set mixed possibility neural networks, 
which perform the highest computational accuracy rate 
at92.1%. The BP networks and RBF networks need to set 
the study parameters for training but the parameters 
setting is confused and should be attempted from 
engineering point. The possibility neural networks can 
acquire high accuracy rate and direct expression, while 



 
 
 

 
Table 3. Results of grasp strategy based on rough set mixed neural networks (number in colored background means a fail compute 
result).  

 

Object space (U2) 
 Attribute parameter  

Decision (di) 
Results of rough set mixed networks 

 

a1 a2 a3 a5 BP RBF PNN 
 

  
 

201 2 0 2 1 4 3.9982 4 4 
 

202 2 0 1 0 3 3.0025 3 3 
 

203 0 1 1 0 3 2.9416 3 3 
 

204 0 1 1 0 4 3.9416 4 4 
 

205 2 1 0 0 4 3.995 4 4 
 

206 1 0 2 1 1 1.0096 1 1 
 

207 1 2 0 0 5 5.285 5 5 
 

208 2 1 0 1 4 1.3385 2.8464 4 
 

209 2 2 0 1 4 2.3588 4.0768 4 
 

210 1 2 0 1 5 5.0096 5 5 
 

211 1 1 1 0 5 4.3467 5 5 
 

212 2 0 1 1 6 6.0036 6 6 
 

213 1 0 1 1 1 0.9973 1 1 
 

214 2 1 1 0 5 5.2134 4.7967 4 
 

215 0 0 0 1 6 6.3847 5.9909 6 
 

216 2 1 2 0 4 4.0014 4 4 
 

217 0 0 1 0 1 1.3245 1 1 
 

218 0 0 0 0 1 1.0134 1 1 
 

219 1 0 0 0 1 1.0069 1 1 
 

220 1 2 0 1 5 5.0096 5 5 
 

221 0 2 1 0 4 4.0327 4 4 
 

222 0 0 1 1 6 5.9951 6 6 
 

223 2 2 1 0 4 4.2964 4 4 
 

224 1 1 0 0 2 2.0021 2 2 
 

225 2 0 0 1 6 5.9926 6 6 
 

226 1 1 1 1 5 2.7281 3.192 5 
 

227 0 0 1 0 1 1.3245 1 1 
 

228 0 0 2 0 3 3.0316 3 3 
 

229 0 1 2 0 4 3.8872 4 4 
 

230 2 0 0 1 6 5.9926 6 6 
 

231 2 0 1 1 6 6.0036 6 6 
 

232 0 0 2 1 3 3.0044 3 3 
 

233 0 1 2 1 4 3.8875 4 4 
 

234 1 1 0 1 2 0.9496 2.5323 5 
 

235 0 2 0 0 4 4.0307 4 4 
 

236 1 1 0 0 2 2.0021 2 2 
 

237 0 1 1 1 4 3.8344 3.0619 4 
 

238 1 2 2 0 5 4.9934 5 5 
 

239 2 0 1 0 3 3.0025 3 3 
 

240 0 0 0 0 1 1.0134 1 1 
 

241 1 2 1 0 5 5.3594 5 5 
 

242 1 0 1 1 1 0.9973 1 1 
 

243 2 1 0 0 4 3.995 4 4 
 

244 0 1 0 0 3 2.6547 3 3 
 

245 0 1 0 1 6 4.1483 2.931 3 
 

246 0 2 2 0 4 3.8978 4 4 
 

247 2 2 0 0 4 2.7543 4.6469 4 
 

248 0 2 0 1 4 5.2734 3.8458 5 
 

249 0 2 1 1 4 3.9017 3.681 4 
 



 
 
 

 
Table 3. Contd.  

 
250 0 0 1 0 1 1.3245 1 1 

251 1 0 0 0 1 1.0069 1 1 
 

 

only trained one time. Thus, rough set mixed artificial 
neural networks can be used as a suitable algorithm for 
grasp strategy modeling. It should be indicated that the 
proposed rough set method simplified the grasp strategy 
decision scheme which lead to a brief structure of 
networks. However, it does not mean that the omitted 
attribute parameter is not considered in the modeling 
process. It takes no effect for the strategy modeling 
because the omitted attribute parameter is redundant in 
the scheme. The underactuated finger mechanism robot 
hand performs preferable feature for passive compliance 
to envelop grasp behavior. The three fingered hand can 
grasp different object with the mentioned grasp 
configurations by suitable grasp strategy planning. 
 

 

CONCLUSIONS 

 

In order to solve the grasp programming problem of robot 
hands during the fruit picking and grading process, the 
following study has been made. In this paper, the 
methods of grasp synthesis planning are summarized. A 
multi-fingered robot hand with underactuated mechanism 
is presented, which has the feature of self-adaptive 
enveloping grasp and can be used for uncertainty tasks to 
grasp unknown object. A grasp strategy modeling method 
is proposed with the purpose of applying in real-time 
control system. The modeling algorithm is based on 
human experience and knowledge by using rough set 
mixed neural networks. A case of examination shows the 
accuracy rate grasp strategy model are higher than 84%. 
Especially the algorithm based on rough set mixed 
possibility neural networks takes accuracy rate at 90.2%, 
which shows the practical feasibility of the proposed 
grasp strategy modeling method. 
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