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Widely distributed inhibitors in grapevine extracts make it difficult to improve analytical procedures for protein 
detection. In this study, acidity in grapevine extracts was one of the major factors inhibiting the detection of neomycin 
phosphotransferase II via enzyme-linked immunosorbent assay. Leaf and berry extracts with low pH (3.0 – 4.0) strongly 
inhibited NPT-II detection, while root and xylem sap extracts (normally pH 5.5 to 7.0) allowed the successful detection 
of NPT-II. The other inhibitory effect against the detection was successfully solved by heat treatment to samples 
extracted. Boiling leaf extract prior to ELISA, in conjunction with pH adjustment (to 7.0) was essential to improve NPT-II 
detection, while with berry extracts only pH adjustment was required. In the basis of above results, NPT-II protein 
contents in transgenic grapevine tissues possessing a NPT-II gene were successfully measured. The results here may 
be useful to help in evaluation of the bio-safety whether the transgenic grapevines were released or contaminated on 
the grapevine cultivation area by NPT-II protein detection. 
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INTRODUCTION 

 
The quantification of localized proteins in plant tissues is 
important to understand their biological activities by the 
movement of proteins passing through long distance 
transport system. However, the quantification is restricted 
in certain plant extracts caused by molecular interaction, 
such as protein-protein and/or protein-secondary metabolite 

interaction. Grapevines are rich in polyphenolic compounds 

(Cantos et al., 2002) and polysaccharides (Moser et al., 
2004). Secondary compounds in grapevine extracts make 
it difficult to purify DNA (Demeke and Adams, 1992; 
Angeles et al., 2005), RNA (Moser et al., 2004; Tattersall 
et al., 2005) and enzymes (Loomis and Battaile, 1966). 
Certain grape polyphenols are also used either as inhibitors 

of enzyme activity in pharmacological products (Larrosa 
et al., 2004; Jo et al., 2005), or as protein precipitators in 
the food industry (Mouécoucou et al., 2003; Weinbreck et 
al., 2004; Cabello-Pasini et al., 2005). The presence of  
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assorted secondary compounds interferes with the 
investigation of protein metabolism in grapevine tissues.  

Difficulties in protein detection in grape extracts are 
likely caused by several factors, including pH, interaction 
between secondary compounds and proteins (Eom and 
Reisch, 2008), as well as the action of proteases. Adding 
protease inhibitors gave partial improvement in ELISA 
detection of a small lytic protein (< 5 kDa) in grapevine 
leaf extracts (Li et al., 2001). Although some macro-
molecules in grapevines, such as tannins and poly-
saccharides, are known to be obstacles to purifying 
proteins by binding to each other (Demeke and Adams, 
1992), other inhibitors of protein detection in grapevine 
remain to be elucidated. Recently, it was found that 
polyphenols affected NPT-II detection using ELISA (Eom 
and Reisch, 2008). NPT-II is often used as a selectable 
marker in transgenic plants. However, the protein is 
difficult to detect in certain tissues of grapevines, even 
though NPT-II gene expression can be verified (Eom and 
Reisch, 2008). Certain acidic molecules, such as tartaric 
acid and ellagic acid, acted as inhibitors of NPT-II detection 

via ELISA (Eom and Reisch, 2008). As reported above, 



 
 
 

 

although we found certain inhibitory factors interfering 
protein detection on ELISA, the improved methods are 
still not investigated. In addition, the efficiency of the 
protein detection in each tissue of grapevine is also not 
known.  

To improve detection of transgenic proteins by mani-
pulating characteristics of grapevine extracts, non-
transgenic Chardonnay (Vitis vinifera) clone 95 (CdCl.95) 
and transgenic (CdEN15 and CdEN18) Chardonnay 
producing NPT-II (29 kDa) and endochitinase (43 kDa) 
were investigated and we reported here the improve-
ments in NPT-II detection in grapevine tissues by pH 
adjustment and heat treatment prior to ELISA. It was also 
investigated whether the improved procedures are 
applicable to the detection of other transgenic proteins, 
such as chitinase. 
 

 
MATERIALS AND METHODS 
 
Plant materials 
 
CdCl.95 and transgenic lines, CdEN15 and CdEN18, in which the 
NPT-II and En42 (endochitinase) genes are constitutively expressed (Vidal 
et al., 2003), were used for this experiment. Grapevines were grown in a 

greenhouse, with 250 µmol m
-2

 s
- 1

 photosynthetic photon flux light 

supplement during the daytime (14 h) at 22 - 28°C. Plants were watered 
with distilled water and 7 to 10 g of fertilizer (Osmocote Plus, Scotts Co., 
OH, USA) was added to each pot (15 cm in diameter) every four 
months.  

 

Sample extraction 
 
An NPT-II ELISA kit containing protein extraction buffer (PEB1, pH 
7), standard NPT-II protein, 1X phosphate buffered saline Tween-
20 (PBS-T), DeMan-Rogosa-Sharpe solution (MRS-2), enzyme 
conjugates (NPT-II monoclonal antibody and polyclonal antibody), 
3,3’,5,5’-tetramethylbenzidine (TMB) substrate solution and 3M 
sulfuric acid was purchased from Agdia (Cat. No. PSP 73000, 
Agdia Inc., Elkhart, Indiana, USA). Leaf and root tissue extraction of 
CdCl.95 was conducted by the following procedures: 9.9 mL of 1X 
PEB1 (Protein Extraction Buffer) solution was prepared and placed 
in a 50 mL tube on ice. 2 g of fresh young leaves and secondary 
hairy roots samples were placed into a pre-cooled 50 mL Falcon 
tubes. 100 L of phenylmethylsulphonyl fluoride (PMSF, Sigma 
Chemical Co., St. Louis, Missouri, USA) was added to the samples, 
to give a final concentration of 20 g/mL PMSF. Samples were 
ground using a mortar and pestle in the PEB1/PMSF solution. 
Some samples were processed without PMSF to test the effect of 
protease inhibitor. Samples were centrifuged at 13,000 g, 4°C, for 3 
min. Supernatant was collected and filtered using a sterile syringe 
filter (0.2 m, Corning , Corning, NY, USA). 0, 0.30, 0.75 and 1.50 ng 
NPT-II standard was added per 1 mL of sample. The pH was 
adjusted to 7.0 with sodium hydroxide and the samples were 
incubated at 100°C in a water bath for 10 min.   

Xylem sap and berry extraction from CdCl.95 was collected by 
the following procedure. Xylem sap dormant grapevines held at 4°C 
were placed in a greenhouse (22 - 28°C). After 8 weeks, stems 
were cut 50 cm above the soil surface and the outer bark peeled (2 
cm from the cut stem) to remove the phloem and epidermal cells. 
The cut surface was washed using distilled water and a 15 mL 
plastic-tube collector was positioned below the stem. Airflow was 
blocked between the cut stem and the collector by wrapping the 

  
  

 
 

 
cover of the 15 mL tube with Parafilm. Xylem sap was collected for 
24 h and was stored at –80°C. Both immature and mature berries 
were collected from greenhouse grown vines. Juice was extracted 
by hand pressing and collected in pre-cooled 50 mL Falcon tubes. 
Juice was filtered using a sterile syringe filter (0.2 m, Corning , 
Corning, NY, USA). NPT-II (0, 0.30, 0.75 and 1.50 ng per 1 mL 
juice filtrate) was added to juice and/or xylem sap samples.  

Procedures for sample collection and extraction from line 
CdEN18 followed the same process described above, except for 
the addition of NPT-II. 

 

NPT-II ELISA  
 
Both 100 L of sample extracts and NPT-II standard series that were 
dissolved in PEB1 were loaded into wells on a pre-coated 96-well 
plate. The plate was incubated at 28°C for 2 h. All subsequent 
ELISA steps followed the procedures outlined by Agdia, Inc., 
except for the incubation temperature, which was increased from 
22 to 28°C (Agdia Inc., Elkhart, Indiana, USA). Optical density was 
read at 450 nm in a spectrophotometer. NPT-II in each sample 
based on calculations using positive controls was quantified. 

 

Chitinase assay 
 
CdEN18 was analyzed for endochitinase activities of root, leaf, 
xylem sap and berry by using the umbelliferyl fluorescence assay 
(Carsolio et al., 1994). Root and leaf tissues (200 mg fresh weight) 
were ground in liquid nitrogen and then placed in 1 ml of PEB1 
protein extraction buffer (Agdia. Elkhart, Indiana). After a 5 min 
extraction process in room temperature, debris was removed by 
centrifugation at 13,000 x g for 15 min at 4°C. Berry and xylem sap 
were used directly without the extraction buffer. Extracted samples 
for experiments involving pH adjustment and heat treatment used 
the same procedures. An aliquot (50 µL) of the supernatant was 
mixed with an equal volume of methyl umbelliferyl-N,N’,N”-triacetyl 
chitobioside (MuchB) 240 µg/ml, in sodium acetate buffer. The 
substrate MuchB produced a fluorescent product, methylum-
belliferone (MU), after hydrolysis by chitinase. The reaction mixture 
was tested in a Cytofluor II microplate reader (CytoFluor II, Fluore-
scence Multi-well Plate Reader, PerSeptive Biosystems, Framingham, MA, 
USA) set to 360 nm excitation and 460 nm emission levels. Absorbance 
readings were recorded every 5 min for a total of 30 min. The amount of 
protein in the root sample was determined using the Bio-Rad Bradford 
dye-binding protein assay according to the manufacturer’s 
recommendation (Bio-Rad Co, Hercules, California, USA). Chitinase 

activity was expressed as nM MU/min/µg protein.  
 

 

Other analyses 
 
Total protein content in grapevine extracts was measured by the 
Bradford method (Bradford, 1976). Different amounts of sample 
extracts, including 100 L from 200 mg F.W./mL PEB1 of leaf and 
root extracts, were assayed by the Bradford method. For xylem 
sap, 1 mL without PEB1 was utilized. To analyze fruit, 100 L of 
juice without PEB1 was used directly. Total polyphenol content was 
measured using gallic acid as a standard (Singleton and Rossi, 1965).  

 

Statistical analysis 
 
Data are presented as means with standard errors for each treatment. 

Means of all data were subjected to standard ANOVA procedures using 

the SAS software (SAS version 8.02, SAS Institute Inc., Cary, 



 
 
 

 
NC). Significant differences among treatment means were determined at 
the 5% level using Fisher's protected least significant difference 
(LSD) tests. 
 

 

RESULTS AND DISCUSSION 

 

Inhibitory effects of grapevine extracts 

 

The ability to detect NPT-II additions to CdCl.95 tissues, 
including leaf, berry, root and xylem sap, was evaluated. 
NPT-II detection was strongly inhibited in leaf and berry 
extracts but not in xylem sap (Figure 1). Although an 
inhibitory effect was seen with root extracts, the NPT-II 

standard curve was linear (y = 0.0051x + 0.0654, r
2
 = 

0.99). Such a linear value of regression and a positive 
slope allow the use of a standard curve to calculate NPT-  
II levels in transformed plants (Figure 1). Therefore, the 
ELISA technique required modification before application 
to grapevine berry and leaf extracts.  

It has been demonstrated that grape leaf and berry 
extracts are acidic, ranging from pH 3 to 4 (Manteau et 
al., 2003). In this experiment, grapevine leaf and berry 
extracts were also acidic compared to other extracts 
(Table 1). Although, leaf tissues were extracted using pH 
7 PEB1 buffer, the extracts were still in the range of pH 
3.0 to 3.5. Younger leaf extracts were less acidic than 
older leaf extracts. However, the rate of NPT-II detection 
did not significantly differ between extracts made using 
different leaf stages (Table 1). NPT-II detection was poor 
in juice extracts from both immature as well as mature 
berries (Table 1). Extracts from leaves and berries were 
both highly acidic, even though leaves were extracted in 
a neutral pH buffer and berries were not. 
 

 

Change of grapevine components affected by pH and 
heat treatment 

 

The addition of protease inhibitors to plant extracts 
prevents protein degradation and the concentration of 
protease inhibitors is a critical factor (Li et al., 2001). 
NPT-II protein was likely not sensitive to protease activity 
in grape extracts because PMSF (a protease inhibitor) 
addition to extracts did not improve NPT-II detection via 
ELISA (Figure 2). Addition of PMSF improved detection 
of endochitinase activity in mature leaves, while it had a 
negative effect on detection in immature leaves (Figure 
2). It is suggested that the addition of a protease inhibitor 
to aid in the detection of certain proteins should be done 
with careful consideration of the characteristics of target 
protein and plant tissues, like mature leaves of grapevine 
that possess abundant proteases. pH adjustment and 
boiling treatments in transgenic grapevine tissues result 
either in degradation or inactivation of chitinase activity in 
a fluorometric assay (data not shown). Thus, the assay 
for endochitinase activity should be conducted without 
heat treatment and pH adjustment. 

 
 
 
 

 

In previous research, the acidic components of leaf 
extracts were hard to remove from solution containing 
proteins for ELISA (Eom and Reisch, 2008). Both the 
methanol soluble fraction of the leaf extract as well as the 
residue containing protein fractions retained their inhibitory 

effect on ELISA detection of NPT-II (Eom and Reisch, 
2008). It can be assumed that pH also affected protein 
detection as a result of the highly acidic condition of the 
extracts. We therefore evaluated whether the adjustment 
of leaf and berry extracts to a neutral pH could improve 
protein detection using ELISA.  

It has been shown that heat treatment of ground tissues 

may induce an increase in the quantity of polyphenols and 

acidic polysaccharides following extraction, resulting in short 

chained forms of these components (Kim et al., 2007). High 

pH improved the detection of activity of certain proteins 

(Diakou et al., 2000). Also, oxidized poly-phenols could 

covalently bind with proteins during extraction resulting in 

inactivation of the proteins and causing extracts to turn 

brown (Angeles et al., 2005). However, in the present work, 

pH change did not affect the total phenolic content of grape 

leaf extracts, but resulted in a slight increase in the content 

in berry extracts (Table 2).  
Grape leaf and berry extracts had a low pH (Table 1) 

and turned brown when boiled. In contrast, extracts 
adjusted to a neutral pH kept their original color after 
boiling and less precipitation was observed. It was found 
that total protein content was greater in samples adjusted 
to pH 7.0 (Table 2). Thus, it is suggested that at higher 
pH values, there may be less binding of NPT-II to other 
molecules. However, heat treatment tended to reduce the 
yield of total protein in leaf extracts compared with other 
treatments. The total protein content in berry extracts 
varied much less in comparison to the changes observed 
in leaf extracts. Heat treatment after pH adjustment may 
affect the degradation of heat sensitive leaf proteins. 
Thus, it is suggested that boiling at a neutral pH might 
improve NPT-II detection via ELISA by denaturing proteins 

negatively interacting with NPT-II in leaf extracts.  
NPT-II detection in leaf extracts was improved by the 

combination of pH adjustment (pH 7) and boiling (Table 2). 

However, either pH adjustment or boiling alone did not 

improve protein detection in leaf extracts. In berry extracts, 

NPT-II detection was also improved when samples were 

neutralized and boiled. Unlike leaf extracts, NPT-II  
detection in berry extracts was also improved when 

samples were neutralized without boiling. 

 

Protein contents in transgenic grapevines 
 

The above experiments suggest that adjusting extracts to 
a neutral pH combined with boiling may be helpful to 
improve the detection of NPT-II via ELISA. However, 
these treatments negatively affect the detection of 
endochitinase activity. For protein analysis, greenhouse 
grown CdEN15 and CdEN18 tissues were used, which 
were previously selected as either low or high NPT-II 



 
 

Fig. 1. 

 

A 3. 0 
 

 2. 5 
 

4
5
0
 n

m
 

2. 0 
 

1. 5  

O
D

 
a
t 

 

1. 0  

 
 

 0. 5 
 

 0. 0 
 

 0 
 

 

 

C  3.0 
 

 2. 5 
 

4
5
0
 n

m
 

2. 0 
 

1. 5  

O
D

 
a
t 

 

1. 0  

 
 

 0. 5 
 

 0. 0 
 

 0 
 

 

 

E 3.0 
 

 2. 5 
 

4
5
0
 n

m
 

2. 0 
 

1. 5  

O
D

 a
t 

 

1. 0  

 
 

 0. 5 
 

 0. 0 
 

 0 
 

  
  

 
 

 

    B 3. 0      
 

     2. 5      
 

    

4 5 0  n m
 

2. 0      
 

    
1. 5 

 
y = 0. 0051x + 0. 0654 

 
 

    

a t 

  
 

       R
2
 = 0.9915  

 

    

O D
 

1. 0 
     

 

  

y = 0. 0178x - 0.046 
      

 

         
 

  R
2
 = 0.9938  

0. 5      
 

          
 

     0. 0      
 

30 60 90 120 150 0 30 60 90 120 150 
 

 NPT- II (pg)     NPT- II (pg)   
  

 

            
D  3.0 

 
 

      
 

                   
 

             2. 5         
 

            

4
5
0
 n

m
 

2. 0         
 

            
1. 5 

        
 

            

O D
 

a
t         

 

            
1. 0 

   
y = 0. 0003x + 0. 0872 

  
 

                  
 

   y = 0. 0005x + 0. 0706           R
2
 = 0.9077    

 

      R
2
 = 0.9463      0. 5         

 

                      

             

0. 0 

        
 

                      

                     
 

                     
 

30 60 90 120 150  0 30 60 90 120 150 
 

   NPT- II (pg)           NPT- II (pg)    
 

                      
 

                      
 

                      
 

                      
   

y = 0. 0173x -  0. 0295  
R

2
 = 0.9947 

 
 
 

 
30 60 90 120 150 

 NPT- II (pg)   
 

Figure 1. NPT-II detection in grapevine extracts. Grapevine tissues (leaf, berry and root) were extracted in PEB1 
(200 mg F.W./mL). Xylem sap was directly tested without a PEB1 extraction. NPT-II standard amounts were 
dissolved into grapevine extracts. (A) PEB1 only, (B) root extract, (C) leaf extract, (D) berry extract and (E) xylem 
sap. Error bars represent standard deviations. 



 
 
 

 
Table 1. pH and NPT-II detection in CdCl.95 grapevine tissues with additions of NPT-II. 

 

Grapevine tissues pH ( SE) NPT-II detection rate (%)
+
 

Immature leaves at nodes 1 to 3 4.09 0.22 2.64 

Fully expanded-young leaves at nodes 3 to 5 3.55 0.14 1.57 

Mature leaves at nodes 5 to 8 3.10 0.23 1.07 

Immature berries within 3 weeks 3.01 0.12 3.14 

Ripened berries 3.39 0.12 2.15 

Xylem sap during breaking of dormancy 5.83 0.29 98.35 

Roots 6.09 0.17 29.09   
Leaf and root tissues were extracted as 2 g fresh weight into 10 mL of PEB1. Then 50 L of each extract with 

the addition of 50 L of NPT-II (75 pg) solution in PEB1 were loaded into wells of an ELISA plate. Berry juice 
and xylem sap were mixed with 50 L of NPT-II (75 pg) solution in PEB1 and loaded into wells of an ELISA 

plate. Calculations of NPT-II detection rates were based on NPT-II detection in a PEB1 solution as a control.  
 

 
Table 2. NPT-II detection rate and concentration of total polyphenol as influenced by pH and heat treatment in 
fully expanded young leaf (FEYL) and ripened berry (RB) extracts of CdCl95. 

 

Parameter  pH 3 – 4 (Raw) pH 7 (adjusted) 

  Not boiled Boiled Not boiled Boiled 

NPT-II   detection   rate FEYL 1.95 c 4.79 b 1.25 c 78.24 a 

(%) RB 4.54 c 4.95 c 71.74 b 94.50 a 

Total protein (mg/mL) FEYL 0.30b 0.29b 0.36a 0.21c 

 RB 0.15b 0.11c 0.17a 0.15b 

Total phenolics (mg/mL) FEYL 30.69 a 27.93 c 30.30 a 29.25 b 

 RB 10.51 b 10.61 b 11.62 a 10.96 ab 
 

Standard NPT-II (75 pg) was dissolved into sample extracts (100 µL) after the treatment of pH and heat processes. 
Values in the same row followed by different letters are significantly different at the 5% level based on Turkey’s 
Studentized Range Test (n = 4). Abbreviations in the second column represent: FEYL - fully expanded-young leaf at 
nodes 3 to 5 from the shoot tip, RB - ripened berry. 

 

 
Table 3. Transgenic proteins in transgenic grapevine tissues by the application of amended protocol. 

 

Tissue Total protein (µg/g F.W. tissue) NPT-II (μg/g protein) Chitinase activity (mM/min/g protein) 

 CdEN15
*
 CdEN18 CdEN15 CdEN18 CdEN15 CdEN18 

Leaf (Young) 6811 6035 0.22 0.04
z
 0.35 0.01 19.80 0.78 15.53 1.78 

Root 5380 5455 0.91 0.08 2.37 0.16 21.54 0.97 26.95 5.59 

Berry 496 771 1.92 0.13 1.48 0.04 92.63 2.45 90.35 4.11 

Xylem sap 75 61 0.19 0.15 3.52 0.24 7.15 0.22 9.42 0.39   
*CdEN15 and CdEN18 mean transgenic chardonnay clone No. 15 and 18 line grapevines that are expressing endochitinase.  
Z
 indicates detection values expressing average standard deviation of triplicate samples. 

 

 

content in their in vitro roots (data not shown). Total 

protein content between the transgenic lines was similar 

in each tissue comparison, except for berries. Total 

protein content was the highest amount (about 6500 g/g 

F.W.) in young leaf tissue among tissues evaluated, 

exhibiting about 5400 g/g F.W. in root, 500 g/g F.W. in 

berry and 70 g/g F.W. in xylem sap, respectively (Table 
3). In the basis of the above improved NPT-II detection 

method, NPT-II in different tissues was successfully 

measured. Table 3 also shows that distribution of NPT-II  

 
 

 

content among transgenic grapevine tissues is likely to 
differ. Similar results of NPT-II contents were observed in 
the roots, leaves and xylem saps of greenhouse grown 
grapevines as compared with the result of the in vitro root 
analysis, presenting the higher content in CdEN18 than 
that in CdEN15. Otherwise, NPT-II content in berry was 
higher in CdEN15 than CdEN18. In the comparison of 
overall tissues, the amount of NPT-II protein was relatively 

low in immature leaf tissues (Table 3).  
In conclusion, grapevine tissue extracts included strong 
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Figure 2. Effect of a protease inhibitor on NPT-II detection and endochitinase activity in 
CdEN18 leaves. (A) NPT-II protein content and (B) endochitinase activity. Error bars 
represent standard deviations. 

 

 

inhibitors of NPT-II protein detection, characterizing low 
pH and interaction between metabolites. It was found that 
these inhibitory factors could be amended by neutrali-
zation of pH and heat treatment. NPT-II protein contents 
in transgenic grapevine tissues were successfully measured 

by using the improved method. These findings would be 
helpful to evaluate the bio-safety; whether the transgenic 

 
 

 

grapevines were released or contaminated on the grape-
vine cultivation area by NPT-II protein detection. 
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