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Due to energy shortage, global warming and climate change, balanced development of energy security, economic 
growth, and environmental protection (3Es) has become a major energy policy issue and prompted the development 
of low-carbon economies. The goals of exploiting new clean energies, improving the efficiency of conventional 
energy sources, and improving renewable energy technologies have gathered considerable attention of 
governments worldwide. Among the many clean energies, hydrogen energy plays an important part in new clean 
energy fields nowadays. However, little has been done in discussing the technology forecasting for the hydrogen 
energy development. Therefore, this study predicts the technological S-curves for hydrogen energy and fuel cell 
technologies by integrating bibliometric and patent analysis into the logistic growth curve model, which includes 
generation, storage, proton exchange membrane fuel cell (PEMFC), solid oxide fuel cell (SOFC) and direct methanol 
fuel cell/direct alcohol fuel cell (DMFC/DAFC). Empirical analysis is via an expert survey and co-word analysis using 
the USPTO database to obtain useful data. The results demonstrate that technologies for generating and storing 
hydrogen have not yet reached technological maturity, and the fuel cell technology is either in the mature stage or 
approaching maturity. 
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INTRODUCTION 

 
The rapid growth in consumption of fossil fuels has accel-
erated their depletion. Fossil fuel reserves are dimi-
nishing rapidly across the world, intensifying the stress on 
existing reserves day-by-day due to increased demand. 
Not only that, fossil fuels, presently contributing to 80% of 
world primary energy, are inflicting enormous impacts on 
environment. Climatic changes driven by human activi-
ties, in particular the production of greenhouse gas 
emissions, directly impact the environment. A secure and 
accessible supply of energy is thus very crucial for the 
sustainability of modern societies (Kothari et al., 2008). 
Hydrogen energy is a valuable high-quality, non-polluting 
and safety fuel (Beccali et al., 2008). In addition, hydro-
gen production represents one of the most promising 
solutions for solving the problem of intermittence in the 
power production by renewable sources by reducing local  
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impacts of energy conversion and diverting it to several 
final uses. Unlike the fuels used today, it is free of carbon, 
as a result, no climate-influencing carbon dioxide is 
released during combustion or use in a fuel cell (Gasafi et 
al., 2008). Thus, it has long been included in the Inter-
national Energy Agency (IEA) plan as a major component 
of clean energy systems and is predicted to account for 
50% of total energy consumption by 2050.  

Hydrogen energy technologies encompass hydrogen 
production, storage and delivery and can be applied to 
fuel cells and internal combustion engines. The hydrogen 
energy industry is currently focused on chemical, 
petrochemical, metallurgy and electronic processes, with 
applications largely in experimental and emerging stages. 
Many companies worldwide have invested in hydrogen 
energy and now offer a wide variety of products that use 
hydrogen energy. However, none of these products has 
reached the scale of mass production. Conversely, most 
hydrogen energy products on the market are substitute 
products; that is, explain what a substitute product is. 
Before consumer demand for such substitute products 



 
 
 

 

increases and their costs reduce, commercial scale 
demand is not foreseeable in the near future. Therefore, 
understanding the technological development of hydro-
gen energy and predicting its future trends will prove 
useful when formulating strategies for hydrogen energy 
development.  

During the past several decades, there has been 
growth in the number of growth curve methods for 
examining the development of technology, and the sub-
situation of technology. Growth curve method involves 
fitting a growth curve to a set of data on technological pe-
formance, then extrapolating the growth curve beyond the 
range of the data to obtain an estimate of future per-
formance (Cheng et al., 2008; Frank, 2004; Meade and 
Islam, 1998; Porter et al., 1991; Watts and Porter, 1997). 
However, it is rather difficult to forecast the development 
of technologies as there are rare historical data available, 
such as in those new clean energies fields. Therefore, 
this study would use the bibliometric analysis to gain the 
useful data for growth curve model to investigate the 
technology forecasting of hydrogen energy technologies, 
which includes generation, storage, the proton exchange 
membrane fuel cell (PEMFC), solid oxide fuel cell 
(SOFC), and direct methanol fuel cell/direct alcohol fuel 
cell (DMFC/DAFC).  

The remainder of this paper is organized as follows. 
Section II provides a literature review; Section III 
describes the methodology and data sources; Section IV 
presents the empirical results; and Section V concludes 
the study. 
 

 

LITERATURE REVIEW 

 

In recent years, the technology forecasting analysis 
technique has been adopted as the analytical tool for 
evaluation of technological performance. Schilling and 
Esmundo (2009), who analyzed renewable energies 
using such a technology S-curve perspective, identified 
some important implications for both governments and 
industry. Their empirical analysis was based on data for 
government R&D investment and technological improve-
ment (in the form of cost reductions). Schilling and 
Esmundo demonstrated that both wind energy and geo-
thermal energy are poised to become more econo-mical 
than fossil fuels within a relatively short time frame. Addi-
tionally, the evidence further suggests that R&D for wind 
and geothermal technologies has been underfunded by 
governments compared with funding for solar techno-
logies, and government funding of fossil fuel technologies 
may be excessive given the diminishing perfor-mance of 
those technologies. Chu et al. (2009) compared the 
performance of three conventional models, namely, the 
Gompertz, Logistic and Bass models, to identify the most 
appropriate model and identify the forces driving the 
diffusion rate. Empirical results indi-cated that the Logistic 
model performed best. Network externalities, which this 

 
 

  
 
 

 

study shows to be the same as the imitation effect in 
superiority of the Bass model, explains the Logistic 
model.  

Cheng and Chen (2008) applied the growth curve 
method to investigate the technological performance of 
nano-sized ceramic powders. That study applied biblio-
metric analysis to the engineering index (EI) database 
and United States Patent and Trademark Office (USPTO) 
database to acquire useful data. The principal finding was 
that nanosized ceramic powders were all in the initial 
growth periods of their technological lifecycle. To sum-
marize, this study found that growth curve methods were 
suitable for examining the technological development and 
substitution.  

However, predicting the development of technologies is 
rather difficult as historical data are typically unavailable 
for new clean energies. Bibliometric analysis is defined by 
Norton (2001) as the measurement of literatures and 
texts. The approach is to capture some of the information 
inherent in the content and patterning of the literature. 
Bibliometric analysis uses counts of publications, patents, 
or citations to measure and interpret technological 
advances (Watts and Porter, 1997). Historically, biblio-
metric analyses have been used to trace back academic 
journal citations. Nowadays, bibliometric analysis can be 
used to understand the past and even potentially to 
forecast the future (Cunningham, 1997; Morris et al., 
2002; Narin et al., 1994). Three major types of biblio-
metric analysis have emerged, which includes citation 
analysis, patent analysis, and publication analysis 
(Garfield et al., 1978). Citation analysis examines refe-
rencing patterns among papers and/or patents to detect 
seminal contributions and interaction patterns, and even 
to forecast emerging research areas. Patent analysis 
relates patenting activity to profile company interests and 
industry trends. Publication analyses take articles and as 
such tell indicators of R&D activities (Garfield, 1978).  

The bibliometric analysis, which was recently applied to 
solve this problem, can provide an interesting alternative 
data source for quantitative evidence of R&D activity and 
text materials (Bengisu and Nekhili, 2006; Martino, 2003; 
Watts and Porter, 1997, 2003). To summarize, biblio-
metric analysis could provide a nicely accessible and 
cost-effective data or information. It helps to explore, 
organize and analyze amounts of historical data helping 
researchers to identify “hidden patterns” that may help 
researchers in the technology forecasting and decision 
making process (Bengisu and Nekhili, 2006; Watts and 
Porter, 1997).  

Therefore, this study uses the bibliometric analysis to 
collect useful data for the growth curve model to forecast 
the development of hydrogen energy and fuel cells, 
including the generation and storage of hydrogen energy, 
the PEMFC, SOFC, and DMFC/DAFC. Besides, this 
study assumes diffusion of hydrogen technologies, as 
measured by number of patents and publications, 
following the well known S-curve of natural growth. 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Scheme of integration for technological S-curve and patent activities. 
 
 

 
METHODOLOGY AND DATA SOURCES 
 
The growth curve model 
 
Many technologies exhibit an S-curve in their performance improve-
ment over their lifetimes (Ayres, 1994; Christensen, 1993, 1994; 
Foster, 1986; Twiss, 1992). When the performance of a technology 
is plotted against the amount of effort and money invested, it 
typically shows slow initial improvement, then accelerated improve-
ment, and then diminishing improvement (Figure 1). Forecasting 
using the growth curves method is based on parameter estimation 
of the lifecycle curve of a technology. The method is helpful for 
estimating the level of technological growth or decline at each stage 
in the lifecycle and in predicting when a technology will reach a 
particular stage (Frank, 2004; Watts, 1997; Meade and Islam, 1998; 
Porter et al., 1991; Bhargava, 1995). Figure 1 shows the S-curve 
concept and patent activities over the technological lifecycle, which 
has four developmental stages (Ernst, 1997). The emerging stage 
is characterized by a relatively slow technological growth compared 
with the amount of R&D effort. During the growth stage, marginal 
technological progress divided by cumulative R&D expenditures is 
positive, and is negative during the mature stage. During the 
saturation stage, small technological performance improvements 
are gained only through considerable R&D efforts.  

The most commonly used formulation of the Logistic growth 
curve or simply the well known S-curve is described by the following 
equation (Meyer et al., 1999), which was the most popular growth 
curve model in technology forecasting field. 
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where  
P(t): The variable representing performance.  
K: The capacity of the population, showing how large the population 
P will become. 
α: The “width” or “steepness” of the sigmoid curve.  
β: The midpoint of the growth trajectory. 

 
 
 

 
Equation (1) produces the familiar S-shaped curve. Note that three 
parameters are needed to fully specify the curve, α, β, k. The 
growth rate parameter, α, specifies the “width” or “steepness” of the 
sigmoid curve. It is often helpful replacing α with a variable that 
specifies the time required for the trajectory to grow from 10 to 90% 
of the limit k. a period which is called the characteristic duration, or 
dt (Meyer et al., 1999). Through simple algebra, the characteristic 

duration  is  related  to  α by DT 
LN


81
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α  
usually more useful than α for the analysis of historical time-series 
data, because the units are easier to appreciate. The parameter β 
specifies the time when the curve reaches 1/2 k, or the midpoint of 

the growth trajectory, often re-labeled tm. The parameter k, as 
discussed, is the asymptotic limit that the growth curve approaches, 
that is, market niche or carrying capacity. The logistic model is 

symmetric around the midpoint tm (Meyer et al., 1999). The three 

parameters k, dt, and tm define the parameterization of the logistic 
model used as Equation (2): 
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dt: the characteristic duration of the curve, i.e., the time needed for 
P to grow from 10% to 90% of k. 
tm: The midpoint of the curve at which 50% of k is reached. 
 
Using Loglet Lab software, which can fit growth processes using 
one or more S-curves and a possible initial displacement, a logistic 
fit is produced that is tested against actual world data and utilized to 
make projections about the global trend. 

 

Data sources 
 
As this study investigates the technology forecasting of hydrogen 
energy and fuel cell, study data were collected from the online 



    

Table 1. Details of expert survey.    
     

Name Title Position and Department   

Chiang KC Patent Engineer Institute of Law for Science and Technology, National Tsing Hua University   

Fan CT Professor Institute of Law for Science and Technology, National Tsing Hua University   

Hwang BJ Professor Department of Chemical Engineering, National Taiwan University of Science and Technology   

Lin CW Professor Department of Chemical and Materials Engineering, National Yunlin University of Science and   
  Technology   

Lin SD Professor Department of Chemical Engineering, National Taiwan University of Science and Technology   

Yang MC Professor Department of Chemical Engineering, National Cheng Kung University   

 

 

Table 2. Background set for patent searching.  
 

Database source USPTO (Issued patents) 
 

Time interval 1969 ~ 2008 
 

Field code TTL(title), ABST(abstract), ACLM(claims) 
 

Generation “Hydrogen production” OR “Production of hydrogen” OR “hydrogen formation” OR 
 

 “formation of hydrogen” OR “hydrogen manufacture” OR “hydrogen 
 

 manufacturing” OR “manufacturing of hydrogen” OR “hydrogen generation” OR 
 

 “generation of hydrogen” OR “hydrogen generator” 
 

Storage “Hydrogen storage” OR “Storage of hydrogen” or “hydrogen storage” OR “storage 
 

 of hydrogen” OR “hydrogen generator” 
 

Keyword 
“Proton exchange Membrane” OR “ion exchange Membrane” OR “polymer 

 

PEMFC 
 

 electrolyte” OR “solid polymer”) ANDNOT (Methanol OR Alcohol) 
 

SOFC “Ion conducting ceramics” OR “Oxygen ion conductor” OR “oxide membrane” OR 
 

 “oxide electrolyte” OR “mixed oxides” OR “inorganic electrolyte” OR “ceramic 
 

 electrolyte” 
 

DMFC/DAFC (Methanol OR Alcohol) AND NOT Reforming 
 

 

 

USPTO database, which was first built in 1969. The data collected 
covered the period of 1969 to the present. This study first dete-
rmined data frequencies using bibliometric analysis. Data were then 
input into Loglet Lab software to generate logistic growth curves. 
Finally, this study obtained technology growth curve data for the 
saturation, midpoint, and growth of time for analyzing technology 
developments and tendencies. Additionally, Co-word analysis is the 
most common analytical tool for inferring a cognitive structure from 
words appearing together and extracting multiword phrases or key-
words frequencies (Watts and Porter, 1997). Therefore, this study 
also used Co-word analysis to infer the cognitive structure of words 
appearing together and extracting multiword phrases or keywords 
frequencies based on an expert survey (Tables 1 and 2). The cu-
mulative frequencies of data for fitting logistic growth curves can be 
used to determine the technological performance of hydrogen 
energy and fuel cells.  

In addition, in the growth curve model, determining fit precision is 
very important. By applying a technique called parametric boot-
strapping (that is, the bootstrap method) one can compute a 
confidence interval for each parameter. The bootstrap method is a 
means of re-creating and re-sampling data using Monte Carlo 
methods (Efron and Tibshirani, 1993; Efron, 1979). The bootstrap 
method synthesizes a dataset by re-sampling residuals from an 
initial fit, and fitting a curve to the new dataset. The Central Limit 
Theorem (CLT) assumes that bootstrapped parameter estimates 
are normally distributed around a sample mean. From these sets 
one can compute confidence intervals for parameters. Loglet Lab 
repeats this process of synthesizing and refitting 200 times, 
producing a sample dataset of 200 values for each parameter, from 
which their respective confidence intervals are computed. From the 

 

 
confidence intervals of a parameter, it would form a confidence 
region containing the set of all curves corresponding to all values of 
a given parameter. Traditionally, bootstrap confidence intervals 
have been determined using various methods (Efron, 1979), such 
as the standard bootstrap method, percentile bootstrap method, 
and biased-corrected percentile bootstrap method. This study 
applied percentile bootstrap analysis to establish bootstrap 
confidence intervals. 

 

EMPIRICAL RESULTS 

 

Using Loglet Lab software and patent publications data, 
logistic fits are produced for hydrogen energy and fuel 
cell technologies. Figures 2 - 6 present growth curves 
based on actual data and fitted models for the period 
1969 - 2008 (as of December of each year).  

Take the example of “hydrogen generation technology.” 
Investigating the development activities of hydrogen 
generation technologies, the numbers of publications of 
those technologies were obtained from the USPTO 
database for the period 1969 - 2008 year. Using the key-
words “hydrogen production” and “production of hyd-
rogen” in the title (TTL), abstract (ABST), and claims 
(ACLM) yielded 1,448 publications for this period. The 
cumulative publications data for hydrogen generation 
technologies were modeled using the logistic growth 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. The growth curve of hydrogen generation technology by using the logistic model: the number of 
publications.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. The growth curve of hydrogen storage technology by using the logistic model: the number of 
publications. 

 

 

curve function, as shown in Figure 2. From Figure 2, the 
significant information about the technological lifecycle of 
hydrogen generation can be obtained. The midpoint of 
the hydrogen generation growth curve was at the year 
2012, the duration of growth time was 36.6 years; the 
drop in publication activity in 2012 may also indicate that 

 
 

 

the technology growth curve passes an inflection point. 
For the periods 1994 - 2012 and 2012 - 2030, the growth 
curve was divided into growth and mature stages. The 
saturation number of publications of the cumulative 
hydrogen generation might be attained to 1972.0. Table 3 
summarizes the results for other cases. A look into 



   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. The growth curve of PEMFC technology by using the logistic model: the number of publications.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5. The growth curve of SOFC technology by using the logistic model: the number of publications. 
 

 

changes in the bootstrap analysis (shadow area in Figure  
2) shows that 90% bootstrap confidence intervals on 
estimated parameters for growth of “hydrogen gene-
ration technology.” The intervals of estimated parameters 
were then obtained; the “saturation” number was 1445.4 - 
2510.9, the “midpoint” was 2006.7 - 2016.6, and “growth 
time” was 28.8 - 42.3 years. Table 4 summarizes 

 
 

 

sensitivity analysis results for other cases. 
 

 

Conclusions 

 
New clean energies have been recognized as drivers of 
today’s rapidly changing environments. Hydrogen 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. The growth curve of DMFC/DAFC technology by using the logistic model: the number of publications. 

 
 

 
Table 3. Life cycle stage of all cases.  

 
 

Cases 
 Years   

Saturation  

 

Emerging Growth Maturity Saturation 
 

   
 

 Generation 1969 1994 2012 2030 1972.0 
 

 Storage 1975 1996 2015 2034 2159.2 
 

 PEMFC 1977 1998 2006 2014 1608.7 
 

 SOFC 1974 1996 2009 2022 1551.1 
 

 DMFC/DAFC 1973 1997 2010 2023 587.5 
 

 
 

 

energies now play important roles in the new clean 
energies field. However, few studies have forecasted new 
clean energies development. This study applied the 
Logistic growth curve model to investigate the techno-
logical performance of hydrogen energy, which includes 
its generation and storage, and the PEMFC, SOFC, and 
DMFC/DAFC. Empirical analyses are based on an expert 
survey and Co-word analysis of the USPTO database to 
obtain useful data. This study is an important reference 
for technology forecasting and development of the new 
clean energies field. Three major findings could be made 
as follows:  

Firstly, hydrogen production and hydrogen storage 
technologies are still currently in their growth stage. This 
is primarily because hydrogen production technologies 
are analyzed in terms of water decomposition, light 
decomposition, and the reforming reaction, with an 
enormous number of patents for myriad technologies. 

 
 

 

This means that a patent search would generate both 
well-developed and new hydrogen production techno-
logies. Hydrogen storage technologies have not reached 
the mature stage and are developing at a slower pace 
than generation technologies. This is mainly because the 
requirements for hydrogen storage systems are stringent 
and current development has hit a bottleneck. Notably, 
analytical results indicate that hydro-gen storage techno-
logies are in the growth stage. In summary, the timelines 
for hydrogen production and storage technologies will be 
long before reaching the mature stage.  

Secondly, fuel cell technology is either in the mature 
stage or approaching maturity. However, fuel cell tech-
nology is still constrained by challenges associated with 
hydrogen storage and production. The commercialization 
of fuel cell vehicles and communication, computer, and 
consumer (3C) products will likely be delayed due 
problems related to hydrogen production and storage. 



  
 
 

 
Table 4. Parameters and accuracy of the logistic fits for all technologies.  

 
     Logistic fits       Congruence analysis 

 Midpoint (TM) [years]   Growth time (DT) [years]  Saturation (K) [numbers]  R
2
 Significance

d
 

 Value
a
 Min

b
 Max

b
 Error

c
 Value

a
 Min

b
 Max

b
 Error

c
 Value

a
 Min

b
 Max

b
 Error

c
  ( Prob. > F ) 

               

Generation 2,012 2,006.7 2,016.6 0.002 36.6 28.8 42.3 0.184 1,972.0 1,445.4 2,510.9 0.270 0.875 0.000 

Storage 2,015 2,013.0 2,032.4 0.005 37.2 39.7 51.1 0.153 2,159.2 1,407.7 6,298.9 1.133 0.892 0.000 

PEMFC 2,006 2,005.4 2,006.2 0.000 15.1 14.7 15.9 0.040 1,608.7 1,542.3 1,735.8 0.060 0.989 0.000 

SOFC 2,009 2,007.1 2,010.8 0.001 26.7 24.5 27.5 0.056 1,551.1 1,205.5 1,751.1 0.176 0.949 0.000 

DMFC/DAFC 2,010 1,998.5 2,031.7 0.008 25.8 12.0 58.0 0.891 587.5 -51.8 2,082.6 1.817 0.977 0.000 
 

a
 Estimated by logistic growth method.

  

b
 Estimated by the bootstrap method with 90% confidence level.

  

c
 Estimated by the ratio of the average distance of the parameter value from its estimated minimum and maximum to the parameter value.

  

d
 Model congruence at significant at the 5% level. All tests are statistically significant with p-values < 0.05.

 

 
 

 

In addition to technological barriers, issues of 
product substitution and high price are addi-tional 
obstacles. Thus, hydrogen energy products will 
likely not be commercialized until 2030 or later.  

Finally, the bibliometric analysis was proposed 
as the simple and efficient tool to link the science 
and technology activities and to obtain quanti-
tative and historical data for helping researchers in 
technology forecasting, especially in rare histo-
rical data available fields, such as the new clean 
energies fields. 
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