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In this paper, the Langevin equation is used to solve hemoglobin aggregation in patients of sickle cell anaemia. The 
resulting second order nonlinear differential equation is solved to obtain a sigmoid deformation behavior. The 
deformation and the absorbance satisfy the Verhulst Model of the first order which is well- known in population 
dynamics. A time-dependent general expression is obtained for the coefficient of viscosity and the elastic modulus 
that characterize the aggregation of the sickle hemoglobins. Finally, the use of a Taylor second order approximation 
showed the viscoelastic and the elasto-thixotropic properties of the sickle hemoglobins polymer. 
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INTRODUCTION 

 
Sickle cell disease is characterized by a molecular 
hemoglobin defect which causes the polymerization of 
deoxygenated hemoglobins and results in reduced ery-
throcyte flexibility, deformation and numerous rheologic 
effects. Sickle cell anaemia produces an abnormal type of 
hemoglobin called hemoglobin S (HbS), which has less 
oxygen-carrying capacity. It results when the amino acid 
valine is substituted for normal glutamic acid in the sixth 
amino acid position of the beta-globin chain of hemoglo-bin 
from both parents giving the molecule the abnormal  
structure ( 2 2

S
). When hemoglobin S is exposed to low-

oxygen states, it crystallizes, distorting the red blood cells 
into a deformation. The abnormal cells are fragile and easily 
destroyed. They cannot pass easily through tiny blood 
vessels and block flow to various organs and tissues, 
causing a vaso-occlusive sickle cell crisis that can be life-
threatening.  

The mechanism of the polymerization of the molecules, 
which is the main cause of the pathology, is not clearly 
known. Several authors have been working on this 
problem. In 1974, Hofrichter, Eaton and Ross studied the 
polymerization mechanism associated with the kinetics of  
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sickle cell gelation. Dejardin et al. (1985) proposed a 
mathematical model for the polymerization of Deoxy-
hemoglobin S molecules. However, in their model they have 
not considered the elastic properties of the sickle 
hemoglobin polymers. In order to improve the previous 
model, Olatunji (1989) proposed to include the elasticity 
properties of the blood. The result was interesting but, in his 
model, the coefficient of viscosity and the coefficient of 
elasticity were constant. Several other authors (Morris et al., 
2009) pointed out in their article the use of several different 
equations to describe the physical properties of the sickle 
cell hemoglobin during the gelation process. In this paper we 

make use of the well-known Langevin equation to solve the 
sickle cell aggregation dynamic. We established the 
expression of a time-dependent coeffi-cient of viscosity 
and a time-dependent coefficient of elasticity. These 
coefficients are then more general than the one 
expressed by Dejardin et al. (1985) and by Olatunji 
(1989). The Langevin equation has been used in the past 
(Park H., 2001) for tracking each particle making up an 
aggregate in a Brownian dynamic motion of particles. In 
their paper, Park et al. (2001) consider the motion caused 
by thermal forces and the electrostatic forces. In this 
paper, we consider hemoglobin molecules as particles 
undergoing motion due to the kinetics force proportional 
to the square of the speed of the particles, the spring 
force proportional to the deformation and the friction force 
proportional to the speed of the particles of 



  
 
 

 

hemoglobins S.  
In other research (Kovalchuk et al., 2008) computer 

simulations of colloidal suspensions based on the 
Langevin equation helped obtain quantitative information 
on clustering in colloidal suspensions. In their paper, 
Monti et al. (2009) has proposed a model based on 
Langevin equation, to measure the rate of motion for cells 
that aggregate. There’s no doubt that the Langevin 
equation can be applied to sickle cell hemoglobin 
molecules flowing in the blood and tending to aggregate. 
 

 
MATERIALS AND METHODS 
 
The experimental plots of the absorbance measured in turbidity on 
deoxy-hemoglobin S solutions at various concentrations in buffer 
phosphate and at a given pH give a sigmoid (Poyart et al., 1981; 
Morris et al., 2009)  

Studying the kinetic aggregation of the deoxy-hemoglobin S, 
Dejardin et al. (1985) established the expression of the absorbance 
that characterizes the time evolution of the average number of 
molecules of deoxy-hemoglobin S that aggregate. The expression  

of the absorbance then was given by  

from which it is easy to obtain the following differential equation: 
 

 
   where  expresses the  viscous 
properties of the blood.  The  insufficiencies  of  the  model 
represented by the previous equation were studied by Olatunji 
(1989) who used the dynamical equation 

, where the last term of the left side is 
the spring force. This equation indicates that each molecule of 
deoxy-hemoglobin S undergoes a set of constraints such as the 
viscosity of a viscous fluid in a non turbulent regime, the constraint 
of inertia during the polymerization and the elastic constraint of 
modulus G.  

As we can see, in the previous model used by Olatunji (1989), 
the coefficient of viscosity and the elastic modulus are considered 
constant. However, as we know, the deformation Q(t) is a 
rheological variable proportional to the Absorbance. In this work, 
knowing that Brownian motion occurs during the polymerization 
process, we make use of the Langevin equation in order to better 
explain the motion of the molecules of deoxy-Hemoglobin S. We 
therefore consider the molecule of Hemoglobin S as a particle of 
mass m. This allows us to obtain a second order differential 
equation similar to the one used by Olatunji and Dejardin with the 
exception that this equation based on the Langevin equation has a 
different physical meaning and uses the fact that a Brownian motion 
occurs during the polymerization process. Also, the evolution 
equation obtained has been solved through an appropriate change 
of variables and the use of physical boundary conditions. The 
expression of the time-dependent deformation Q(t) and absorption 
A(t) can then be obtained.  

It is interesting to introduce in the model a delay term 
representing the shear rate used successfully by Cushing et al. 
(1977). In one hand the integro-differential equation obtained  

 can be changed into a Volterra 

integro-differential equation. In this paper, we solved the previous 

differential equation  by  using  some  kernel  k(t s) used 

 
 
 
 

 
successfully in mathematical biology. We found also a general 
expression for the coefficient of the viscosity and the elastic 

modulus. The case a3 0 represents a special case studied by 
 
Olatunji (1989). After performing the Taylor approximation of the 
second order, we found an explicit form of the population of deoxy-
hemoglobin S molecules as a function of time. We can therefore 
retrieve the viscoelastics and the elasto-thixotropic properties of the 
blood. 
 

 

RESULTS AND DISCUSSION 

 

In order to find the equations for the dynamics of the 
polymerization of deoxy-hemoglobin S molecules, let us 

assume m and Q(t) are repectively the mass and the 
 
deformation of a molecule of hemoglobin in random 
motion, the Brownian motion occurs and we can apply 
the Langevin equation:  
 
 
 

 

The force exerted on the particles of hemoglobin is given 

by:  
 
 

 

and the friction force exerted on the hemoglobin S in 
 

dQ 

motion,   withthe  coefficient of  friction. 

   dt   

kQ(t)  is the spring force and k the spring constant. 

The deformation  Q(t) is the  extra  stretch  of  the 

polymer with respect to the initial position x0 where the 

velocity, v0  , is zero. 
 
We then have the following evolution equation:  
 
 
 

 

where is the frequency of vibration of the polymer and , 

the coefficient of friction per unit of mass. 
 

We can now find the solution of the evolution equation 

in a steady regime using the change of variable:  
 
 
 
 
 
 

We then transform the evolution equation (3) in the form 

of a differential equation of Riccati, that is:  
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Figure 1. Evolution of the Deformation as a function of time: the deformation increases until a maximum asymptotical value 

Q . The plot of the deformation gives a sigmoid (Lesecq et al., 1997). 

 
 

f1 and  f2 are the roots of the quadratic equation (5). 
 

The boundary conditions that satisfy the dynamics of 

the system are lim f (t) f0 and lim f (t) 0 . 
t 0 t  

Indeed, when the polymer is formed over a long period of 
time, the system of the hemoglobin molecules velocity is 
zero; the growth has reached its maximum and the 
aggregation frequency can be written:  
 
 
 

 

where ( , l, ) are the coupling parameters of the 

rheological constants with the following definitions:  
 
 
 
 
 
 
 

 

Finally, using equations (6), (7) and (8) we obtain the 

variation of Q as a function of time:  
 
 
 
 

with the condition lim Q(t) Q .  
t  

 
 

 

RESULT 1 
 

The Graph of the time-dependent deformation Q(t) gives 
 
a sigmoid (see Figure 1).  

Moreover, using the Beer-Lambert Law it can be 
proved that the absorbance is proportional to the 
deformation. Therefore we can definitively write the 

absorbance, A(t) measured in turbidity in the following 
 
form:  
 
 

 

which gives the new expression of the parameter l as 
 

 A
 
 

 

 

1 
,
 

 

l A 
 

0  
 

where A0 0 and A 0 are respectively the values of the 

absorbance, A(t) , at t = 0 and at t = . Using equation 

(10), it is possible to get the following differential 

equations for the variable Q(t) and the aggregation 

frequency, f (t) : 
 



  
 
 

 
this is a first order deterministic differential equation;  
 
 
 
 

 
which is a nonlinear differential equation of second order; 

 

ff 
2
f , (13) 

 
which  is  a  differential  equation  (Riccati  type)  for  the  
aggregation frequency, . 

 

Finally we get for the absorbance, A(t) a similar equation 
 
to (11) which is the following deterministic differential 
equation:  
 
 
 
 

 

   

with0 . 

 

where a1 

 

and a2 

 

A 

 

  
 

 
 
RESULT 2 

 
The deformation in equation (11) and the absorbance in 
equation (14) satisfy the Verhulst Model of the first order 
(Hallam et al., 1986).  

To better describe the characteristics of the model in 
terms of molecular dynamics we will now introduce the 
 
dynamical equation with a delay term d homogeneous 

dt 
to a shear rate (Cushing, 1977):  
 
 
 
 

 

Where 

 
Finally the following equation represents the mathema-
tical model for the kinetics aggregation of the 
deoxyhemoglobin S molecules:  
 
 
 

 

The  kernel  k(t s) is  a  memory function (Cushing, 
 
1977) called the heredity kernel. An integro-differential 
equation of Volterra type can be obtained by setting 

 
 
 
 
 

p(t) A (t) . Therefore,  
 
 
 
 
 
 
The integro-differential equation (17) becomes:  
 
 
 
 
 

with a a1 b a2 c a3  . 

 

In equation (19) a represents the intrinsic growth rate r 

from the Malthusian model and b represents K/r where K 
is the carrying capacity or the population size that the 
available resources can continue to support in the 

Verhulst model. The condition c 0 in equation (19)  
represents the Verhulst model (Zwanzig, 1973). We will 
now use some examples of kernels k(t) used successfully 
in mathematical biology: 
 
First example: k(t)  = 1 = constant 

 
In this case, the general dynamical model (19) reduces to 

the Volterra model:  
 
 
 
 
 
We observe that the shear rate takes its simplest 
expression, that is:  
 
 
 
 

Second example: k ( t ) T
1
 e   t / T

  
 

 
In this example, T > 0 and has the dimension of time and  
 
 
 

 
k(t) is the first generic kernel (Cushing, 1977) also called 
moderate kernel. Qualitatively, the model represents a 
moderate delay. The kernel decreases exponentially. 
This kind of kernel corresponds to the viscoelastics 
rheological behavior of Voigt-Kelvin materials and 
Maxwell simple fluids. Another example of a moderate 
kernel is shown in Figure 2.  

We now find the mathematical model for the viscosity 

coefficient 
*
 (t) and the elastic modulus G

*
 (t) , we use 

f (t) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Variation of a moderate kernel k(t) = 

 

 

the general dynamical model represented by equation 

(17) with the shear rate    , we can  
study in detail the Volterra integro-differential equation 

given by:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

t t 
    

640 exp(   

0 80  ) . 
 

 

RESULT 3  
 
 
 
The expressions and coefficients of viscosity and the 

elasticity. 

 
 
 
 
 

It is possible to get from (23) an equation of evolution of 
second order which involves the molecular interaction 
forces of the form:  
 
 
 
 

 

where *(t) is a new time- dependent friction coefficient 
and G*(t) is a new induced elastic modulus of the elastic 
force with the following definitions:  

  

 give respectively the 
general form of the viscosity coefficient and the elastic 
modulus.  

We will now try to obtain the solution of the Volterra 
model in molecular dynamics by making the appropriate  

change of variable q 0
t
 p(s)ds in equation (20). Using 

the initial conditions q(0) 0 and p(0) p0 for 
 
the initial population, the solution of equation (20) can 
then be put in implicit form as follows:  
 
 
 

 

with  
 

 

It can be observed that if a3 0 , equations (25) and 
 
(26) lead to previous models (Dejardin et al., 1985) where  
the 

elastic modulus, G
*
 , was zero. As a result, equations 

(25) and (26) represent a more general form of the 

 
 

 

For p0 a / b , (q) presents a maximum and tends to zero 

(extinction); but for p0 a / b there is no maximum for (q) 

; however, there’s an extinction of the population. This 

paper considers all values such that 



   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Evolution of the population of Hemoglobins as a function of time for q1 0 and q2 0 

 
 

p0 a / b where there is both maximum and extinction. 
 
In such conditions, the coordinates of the maximum are 

given by:  
 
 
 
 
 
 
 
 
 

 
We can also find the explicit solution to the integro-
differential equation by Taylor’s approximations. The first 
order approximation consist of setting  
 
 
 

Therefore we have directly p as a function of time t:  

 
 

 
Equation (27) becomes:  
 
 

 

Equation (35) can be put in the equivalent following form:  
 
 
 

 

where . 
 
The discriminant of equation (36) is given by 

2 
4Bp0 and p can be written:  
 
 
 

where q1 and q2 are the roots of the quadratic 

equation (36).  
It is then possible to find and p(t) explicitly as 

 
follows:   

with  
 
Equation (32) represents the Malthusian model in 
population dynamics which, as we know, is not quite 
realistic. In the second order approximation we use,  

q(t) 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Variation of the viscoelastics coefficient with respect to time. Here the viscosity decreases over time 
and shows the elasto-thixotropic behavior.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Variation of the viscoelastics coefficient with respect to time. In this graph, the viscosity increases over 

time showing the visco-elastic behavior. 

 

The study of the variations of p(t) proves that the second 
order approximation is more interesting (see Figure 3). 
The components of the maximum of p(t) in the previous 
expression are given by:  

 

 

*(t) and G*(t) can now be written as follows: 
 

a 
**3 

q(t). (41) 
 

(t)(0)   a 
 

1   
  

 
 
 

 

The  analytical expression of the rheological functions with the following definitions: 



   
 
 
 
 

 

RESULT 4 
 
The Taylor second order approximation shows the 
viscoelastic (increasing part of the graph) and the elasto-
thixotropic (decreasing part of the graph) properties of the 
blood.  

In this model it is interesting to look for the viscoelastics 
and the elasto-thixotropy behavior (Quemada, 1984) of 
the blood. These properties can be found by considering 
the hypothesis of a closed system with the shear rate,  
 
 
 
 

Therefore the dynamical equation becomes:  

 
 
 
 

 

molecules in sickle cell anaemia is relevant. The graph of 
the time-dependent deformation of the molecules of 
deoxy-hemoglobins S gives a sigmoid. It is also shown 
that the verhulst model is satisfied by the deformation and 
the absorbance. Moreover the use of the Langevin 
equation helps to describe the mechanical properties, 
(visco-elasticity and elasto-thixotropy), of the aggregation 
of sickle hemoglobins S molecules. 
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with the following modifications:  
 
 
 
 

 

 (0) 
a 

3 
* a 1 a 3 

 

      
 

  

and G (0)   a  . 
 

where  a  
 

   2 2 
 

 
The coefficient of viscosity can then be written:  
 
 
 
 
 

 

with the following definitions:  
 
 
 

 

and  
 
 
 
 

 

Figure 4 and 5 show the variation of the elasto-thixotropic 

and the viscoelastic behaviors of the sickle cells polymer. 

 
 
Conclusion 

 

This study shows that the use of Langevin equation to 

describe the polymerization of the deoxy-hemoglobin S 
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