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This paper investigates the effect of support vector machine (SVM) for the classification of intact and cracked eggs. 
The four frequency features of the sound impulse resonance of an egg excited with a light mechanical impact on the 
equator of the eggshell are extracted, including the normali-zation average of the frequency domain, the first 
dominant frequency, and the average x - and y – coordinates of the centroid for the frequency domain. These 
features and also the various combina-tions of them are used to construct SVM classifiers. It is shown that the SVM-
PFXY classifier based on all the four frequency features gives the best classification effect with 98% testing 
accuracy, 98.18% crack detection and 2.11% false reject, and that the SVM -P, SVM-PF and SVM -PFY are res-
pectively the best single-feature, binary -feature and three-feature SVM classifiers. It is also revealed that the SVM 
classifier associated with more features generally gives a better classification effect. For evaluating the effects of 
SVM classifiers for actual crack detection, this paper proposes a detec-tion scheme of eggshell cracks based on 
four measurements, and the experimental example achieves the highest crack detection of 98.77% and the smallest 
false reject of 1.87%. 
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INTRODUCTION 

 
The detection of eggshell cracks, usually done manually 
in the poultry industry, has become a bottleneck for the 
automation of egg sorting and packaging due to the 
increasing throughput of modern egg grading machines 
and considerable effort has therefore gone into the deve-
lopment of methods of replacing the manual inspection 
with a highly effective and automatic detection, which has 
important significance both in economy and food safety to 
those involved in the production and marketing of eggs, 
including producers and consumers(DE Ketelaere et al., 
2004; Hunton ,1995).  
Recent researches on the detection of eggshell cracks 

are mainly focused on the vibration-based response ana-
lysis. It has been shown that vibration- based methods 
have better accuracies of detection than machine vision 
methods, especially for those hairline and invisible cracks  
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(Cho et al., 1996, 2000). In the vibration-based detec-tions, 
a variety of comparisons are broadly used to find crack-
sensitive indicators. For instance, De Ketelaere et al. (2000) 
found that for intact eggs, the impulse response was very 
similar on every point on the equator, whereas eggs with a 
damaged shell show a different response on different 
locations of the equator, and authors therefore, proposed a 
crack detection algorithm (90% crack detection and 1% false 
rejects) based on the correlations between repeated 
measurements taken on the same egg (4 measurements) . 

Wang and Jiang (2005) found that for the cracked eggs, the 
magnitudes of the same peak fre-quencies were similar 
and its first dominant resonance frequency value is lower 
than that of intact eggs and the authors reported 96% 
detection accuracy. Jindal and Sritham (2003) used 
artificial neural network techniques to classify eggs based 
on the vibration after impact and 8 measurements for 
each egg and the authors gave a crack detection level of 
almost 99%, but allowed for more than 10% false rejects 
(Coucke, 1999; Wang, 2003; Kemps, 2003 and Sinha, 
1992). 



 
 
 

 

In the literature, the existing researches are mostly fo-
cused on finding the most effective crack indicator by the 
frequency analysis of vibration signal. It is worth empha-
sizing that the crack indicators used in the literature are 
all single-feature indicators, and a valuable issue is 
whether some better classification indicators could be 
constructed by the optimal combination of crack-sensitive 
features. The objective of the presented paper is to 
explore more effective multi-feature crack indicators by 
the use of the support vector machine (SVM) (Vapnik, 
1995).  

Support vector machines were originally designed for 
binary classification with the aim of finding a decision 
surface that has a maximum distance (margin) from the 
closest training points. Many researches from the differ-
rent application areas have shown that the SVM is one of 
the most powerful classification methods (Trebar and 
Steele, 2008; Karimi et al., 2006; Ma and Huang, 2000). It 
is known that the egg crack detection is a typical binary 
classification problem: intact or cracked, this leads this 
study to construct new detection models by use of the 
excellent classification power of SVM technique. In this 
paper, the SVM classifiers based on the different feature 
selections (from single feature to four features) are set up 
and their effects for crack detection are dis-cussed and 
compared. These SVM classifiers are expec-ted to show  
a robust and efficient correlation to the detec-tion of 

eggshell cracks. 

 
MATERIALS AND METHODS 
 
Egg samples 
 
Large fresh eggs were collected when one-day old from a com-
mercial farm in Wuhan. The mass of eggs ranged from 58.6 to 71.1 
g with an average of about 66.4 g. All cracked eggs were separated 
from intact eggs, in which some cracks were artificially inflicted on 
eggshells for the experiment. A micrometer and calipers were used 
to measure the cracks, and some cracked eggs were detected with 
hairline cracks and offshoots ranging from 14 to 80 mm. 

 
Experimental system 
 
The experimental equipment consisted of an egg-bed with con-
denser microphones installed, a roller for rotating the eggs, a 
mechanical impulse device, a signal amplifier, a personal computer 
(PC) and software to control the experimental setup and to analyze 
the results. The experimental equipment also consisted of a 
mechanical impulse device that was composed of a pendulum at an 
angle of 0 - 90° and an 8 g wooden ball on an extremely thin nylon 
string. As a result of the preliminary tests, in the mechanical 
impulse device, an angle of 45° was selected for all further tests. A 
sche-matic diagram of the system is presented in Figure 1.  

In the above experimental system, the sound emitting from the 
egg surface after excitation was picked and converted to electrical 
voltage signal by the microphone and then the signal was amplified 
and passed through A/D converter into the computer for further 
processing. 

 
EXPERIMENTAL PROCEDURE 
 
The sample signals were recorded by exciting each egg one 

  
  

 
 

 
time on the equator. For each cracked egg, the tested egg was 
artificially placed in an egg-bed such that the crack was located in 
the right half surface of the eggshell (Figure 1) and the various 
positions of the crack relative to the impact point were considered. 
All the obtained signals were divided into two groups; the first group 
consisting of 100 cracked eggs and 100 intact eggs and the second 
group consisting of 55 cracked eggs and 95 intact eggs. The two 
groups of signals were used to extract frequency features as the 
training data and testing data of SVM classification, respectively.  
In this paper, the Matlab7.6 computer program was used to trans-
form the response from the time domain to the frequency domain by 
FFT with the sampling frequency 22050 Hz and 1024 - points, as 
demonstrated in Figures 3 and 4. The SVM was performed using 
LIBSVM software package libsvm-mat-2.86 -1 (Chen and Lin, 
2001). 

 
SVM technique 
 
The support vector machine is a kind of learning machine based on 
statistical learning theory. Its main principles of classification are as 
follows: First, map the input vectors to a feature space (possibly of 
a higher dimension) either linearly or non-linearly, which is relevant 
to the selection of the kernel function. Then within the feature 
space, seek an optimized linear division, that is, construct a hyper-
plane that can separate two classes with the least error and 
maximum margin. In Figure 2 the given data sets consists of two 
classes of samples (circles and squares); SVM attempts to find an 
optimal separating hyper-plane with maximum margin from the 
hyper-plane to the closest point. The best decision surface is 
determined by only a small set of points called the support vectors.  

Given the labeled training data of the form (xi , yi )i
n
1 , each 

training sample xi  R 
N

 belongs to either of two the classes; n is 

the number of training samples and yi 1,1 is the class label. 

Then the separating surface generated by SVM is given by 
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f (x)  sign  i , x)  b ,  
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where K is the kernel function that defines the feature space, b is 

the bias value, i is the number obtained by solving the following 

quadratic programming (QP) problem: 

min 
1

 || w ||
2

 C 
n

 i , 
2
 i1 

subject to yi (w  xi  b)  1  i ,i  0i  1,2,..., n,  
where C is a regularization parameter that controls the trade-off 
between maximizing the margin and minimizing the training error. 
The solution of this problem can be obtained by solving its dual 
formulation: 
 

n 1 n  n 
 

max W ( )    i   i j yi y j K (xi , x j ),  

 
 

i1 2 i1 j1 
 

 
n 

subject to iyi0,0iC,i1,2,...,n.  
i1 

 
The performances of SVM classifiers depend on the combination of 

several parameters; capacity parameter C, kernel type K and its 
corresponding parameters. The kernel function can be linear, 



   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Schematic diagram of detection system.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Maximum-margin hyper-plane for a SVM trained 

with samples from two classes. 
 
 

 
polynomial or Gaussian. In this study, the radial basis function 
(RBF) kernel is chosen because of its good general performance 

and the few parameters (that is only two: C and  ). The RBF kernel  
is defined as: 

K(x, y)  exp  || x  y ||
2
  

 
(2) 

 

Where  is the parameter of the kernel function and x and y are the 

two independent variables. 

 
Evaluation criteria for egg classification 
 
It is expected that some intact eggs will be classified as cracked 
and some cracked eggs as intact. Therefore, the respective 
percentages of cracked egg detection and false reject were used for 
performance evaluation similar to the study of (De Ketelaere et al., 
2004). Let N1 and N2 be the total number of cracked and intact eggs 

 
 
 
 

 
respectively, M1 the number of cracked eggs correctly classified, M2 
the number of intact eggs falsely classified, then the percent crack 

detection (denote by PCD) and the percent false reject (denoted by 
PFJ) are defined as follows: 
 

PCD  M1 , PFJ  M 2  
 

   
 

 N1 N 2 (3) 
 

 
Generally, the percent crack detection will rise when allowing for 
more false rejects. A good practice is to set the false reject to a 
level that is acceptable for practical purposes, and to report the 
percent crack detection achieved at that specific false reject level. 

 

RESULTS AND DISCUSSION 
 
Frequency feature selection 
 
Typical time - and frequency - domain signals from crack-
ed and intact eggs are shown in Figures 3 and 4, respect-
tively. This study will restrict its analysis to the frequency 
range (86, 5512 Hz), which reveals the main frequency 
differrence of cracked and intact eggs. Moreover, this 
allows the elimination of the nature frequencies of the 
experimental system, which happens to be very low in 
comparison to that of eggs.  

To implement SVM technique, some frequency features 
of most relevance to the classification task should be 
firstly extracted and used as the input vector for a SVM 
classifier. The frequency analysis technique of the acous-
tic impulse resonance had been broadly used for egg-
shell crack detection, in which the relationships between 
the main frequency features and eggshell cracks were 
discussed in detail (DE Ketelaere, 2000; Cho, 2004; DE 
Ketelaere, 2004 and Wang, 2005). In this paper, four fre-
quency features are included: the normalization average 
of the frequency domain (defined by (4)), the first domi-
nant frequency that is the frequency of the highest peak 
(defined by (5)), the average x- and y- coordinates of the 
centroid for the frequency domain (defined by (6) and (7), 
respectively). 
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where Pi is the magnitude at the i
th

 frequency point fi, F 

and P are respectively the sums of frequency values and 

magnitudes of the frequency domain, defined as follows: 



   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Typical time signal of the response of eggs.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Typical frequency signal of the response of eggs. 

 
n n 

F    fi , P    Pi . 
i1 i1 

 

The selected 100 intact eggs and 100 cracked eggs are 

randomly numbered from 1 to 100, respectively. Figures 5 

 

 

- 8 give the distributions of feature values of the 200 egg 

samples. As an example, the No.7 cracked egg is very 
difficult to distinguish when using the normalization ave-
rage of the frequency domain or the average x- coordi-
nates of the domain centroid as the crack indicator (Fi-
gures 5 and 7). 



       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5. The distribution of the normalization average of the frequency domain for 100 

intact eggs and 100 cracked eggs.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. The distribution of the first dominant frequency for 100 intact eggs and 100 

cracked eggs. 
 
 

However, it can be clearly classified from the other two 

features (Figures 6 and 8). A possible method for 

improving the detection effect of the single-feature 

 
 
 

indicator is to construct new classification indicators 

based on the combination of the above frequency fea-

tures. This is why the SVM technique is introduced in the 



   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. The distribution of the average x- coordinates of the frequency domain centroid 

for 100 intact eggs and 100 cracked eggs.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. The distribution of y-coordinates of the frequency domain centroid for 100 intact 

eggs and 100 cracked eggs. 
 

 

present paper. 
There exist obvious level differences among the values 

of the different frequency features. Here some scale 

 
 

 

parameters are introduced to transform these feature 

values to the same value level. Corresponding to the 

above frequency features ((4) – (7)), the scaled fre- 



 
 
 
 

 
Table 1. Training results of single feature classifiers, C = 250, = 20. 

 

Classifier Training accuracy (%) #SVs Crack detection (%) False reject (%) 
     

SVM-P 90.5(181 / 200) 54 93 12 

SVM-F 89.0 (178 / 200) 60 86 8 

SVM-X 75.0 (150 / 200) 106 58 8 

SVM-Y 87.5(175 / 200) 56 75 0 
 

 

quency features are defined as follows: 
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where Cp, Cf, C x and Cy are scale parameters which can 

be determined by considering the difference levels 

among the feature values of all sample eggs. 
 
Let N denote the total number of sample eggs (or sig-

nals), P 
(i)

 , Fr 
(i)

 , Dx
(i)

 and D
(
y
i)
 denote the frequency 

 

features of the i
th

 sample egg, respectively. In this paper, 

the scale parameters are given that 

C p  max 

 (i)
 , C f  maxFr 

(i)
  
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 , C f  maxDy
(i)

 .  
 

1in 1in  
 

 
The above scaled features will be respectively denoted 

by letters P, F, X and Y if a simple expression is needed 

in the remaining part of this paper. 

 

SVM performance 
 
In this part, the various SVM training models based on 
the different feature selections are firstly discussed. The 
training data set is consisted of the scaled frequency fea-
tures of the first group of sample eggs, in which the fea-
ture values of 100 cracked eggs are label1ed - 1 and the 
feature values of 100 intact eggs label1ed 1. In the expe-
riment, an exhaustive search over the model parameters 

C and  is performed in order to find the values where  
the total number of errors are minimum. The results for 

this search show the optimal values lay near the values C 

= 250 and  = 20. The two particular values are used in  
all remaining experiments. 

Table 1 gives the training results of single - feature 
classifiers. In Table 1, SVM-P denotes the SVM classifier 
based on the scaled feature P that is the normalization 

average of the frequency domain Pc. It is easy to see the 

connections between the classifier names and the 
selected features throughout this paper. From Table 1, 
the SVM-P is the best single-feature classifiers with 

 

 

90.5% training accuracy, whereas the SVM-X reveals the 
worst training accuracy of 75%. The training accuracy 
associated with a feature also shows the crack-sensitive 
power of the feature. The results provided in Table 1 are 
consistent with the conclusions of relative researches (DE 
Ketelaere, 2000; Cho, 2004; DE Ketelaere, 2004; Wang, 
2005).  

This paper is interested in the multi- feature SVM clas-
sifiers based on the different combination of features. The 
results are shown in Table 2. Obviously, these multi-fea-
ture SVM classifiers reveal higher training accuracies 
than that of single- feature- based SVM classifiers. In 
fact, The SVM-PF, SVM-PY SVM-PFXY and all four 
three-feature classifiers are revealed with high training 
accuracies.  

In what follows, a testing data set consisting of the fea-
ture value vectors of 55 cracked and 95 intact eggs is 
used to further test the performances of these SVM clas-
sifiers. For simplicity, only the best single-, binary-, three-
and four- feature classifiers are taken into account. The 
results are shown in Table 3. 

The results show that the SVM-classifier associated 
with more features generally gives a better testing accu-
racy. The SVM-PFXY is the best of all classifiers with the 
testing accuracy of 98%. The SVM-PF, SVM-PFY and 
SVM-PFXY reveal the same crack detection accuracy of 
98.18%, but only the SVM-PFXY provides the smallest 
false reject accuracy of 2.12%. 

 

SVM classification based on four excitations 
 
In the above section, the SVM classifiers are set up in the 
case that the cracks are located in the right half surface 
of the eggshell centered at the impact point (Figure 1). 
From the point of view of consistency, a detection 
scheme based on four excitations is proposed. In this 
scheme, the eggshell would be impacted on the equator 
when rotating the roller approximately by 90° each time 
and the SVM classification is timely preformed by using 
the selected frequency features of the acoustic reso-
nance as an input vector. The tested egg is classified as 
an intact one only when the egg is intact for all four de-
tections. 

The above scheme is tested with the randomly selected 

240 sample eggs. In the experiment, the eggshell cracks 

are inspected and recorded by artificial method in 
advance. The actual detection accuracies are obtained by 



  
 
 

 
Table 2. Training results of multi-feature classifiers, C = 250, = 20. 

 

Classifier Training accuracy (%) #SVs Crack detection (%) False reject (%) 

SVM-PF 98.0 (196 / 200) 21 98 2 
SVM-PX 92.5 (185 / 200) 38 94 9 
SVM-PY 98.0 (196 / 200) 21 99 3 
SVM-FX 93.5 (187 / 200) 46 93 6 
SVM-FY 94.0 (188 / 200) 37 95 7 
SVM-XY 90.0 (180 / 200) 53 80 0 
SVM-PFX 98.0 (196 / 200) 26 98 2 
SVM-PFY 99.5 (199 / 200) 20 100 1 
SVM-PXY 98.5 (197 / 200) 16 99 2 
SVM-FXY 96.5 (193 / 200) 37 96 3 
SVM-PFXY 99.5 (199 / 200) 19 100 1 

 

 

Table 3. Testing results of the selected classifiers, C = 250, = 20. 
 

Classifier Testing accuracy (%) Crack detection (%) False reject (%) 

SVM-P 80.00 70.91(39 / 55) 14.74(14 / 95) 

SVM-PY 96.67 98.18(54 / 55) 4.21(4 / 95) 

SVM-PFY 97.33 98.18(54 / 55) 3.16(3 / 95) 

SVM-PFXY 98.00 98.18(54 / 55) 2.11(2 / 94) 
 

 

Table 4. The results of SVM classification experiment based on four 

excitations, C = 250, = 20. 
 

Classifier Accuracy (%) Crack detection (%) False reject (%) 

SVM-P 89.17(214 / 240) 91.36(74 / 81) 11.94(19 / 159) 

SVM-PY 96.25(231 / 240) 98.77(80 / 81) 5.03(8 / 159) 

SVM-PFY 97.50(234 / 240) 98.77(80 / 81) 3.14(5 / 159) 

SVM-PFXY 98.33(236 / 240) 98.77(80 / 81) 1.87(3 / 159)  
 

 

the comparison of the results of the artificial detection and 
SVM classification. The results are shown in Table 4. The 
experiment results are consistent with the testing results 
presented in Table 3. From Table 4, the four -exci-tation 

scheme shows a small improvement in crack detections 
and no significant change in false rejects. 

 

CONCLUSIONS 

 
This paper presents a detailed analysis of the classify-cation 

effects of SVM classifiers. It is shown that the SVM classifier 

based on the combination of features provides a better 

detection effect than that of the single- feature crack 

indicator. The main findings are summarized as follows: 
 
1. The SVM-P, SVM-PF and SVM-PFY are respectively 
the best single-, binary- and three-feature classifiers 
(from Table 1 to Table 3). Generally, the SVM classifier 
associated with good crack-sensitive features shows a 
good detection effect.  
2. The  SVM  classifier  associated  with  more  features 

 
 

 

generally shows a better detection effect (from Tables 2 
and 3). For instance, the SVM-PFXY gives a higher test-
ing accuracy than that of the SVM- PFY by taking 
account into the average x - coordinates of the frequency 
domain centroid (the worst crack-sensitive feature).  
3. The crack detection percentage of SVM classification 
can be improved by increasing the number of measure-
ments that is, reducing the distance between the excita-
tion point and crack, whereas the false rejects reveals no 
significant change when increasing the number of 
measurements. 
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