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The conjugate Gradient Method relies on symmetric positive definite property of a matrix operator. In 

this work, we investigate and establish the case of non-positive symmetric matrix operator using 

various forms of conversions and transformations on the operator. 
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INTRODUCTION 
 
Consider the quadratic functional of the form: 
 

f ( X )  f0  a, X H   1 X , AX H    (1) 
  2  
where A is an nxn symmetric positive definite constant 

matrix operator on Hilbert space H, a is a vector in H  
and  f0  is a constant term. The minimization of the above  
quadratic form by conjugate gradient Method (CGM) 
relies on the symmetric positive definite of matrix A. See 
[6, and 9]. Our attention in this work is on a non-positive 
symmetric A which can be converted to positive definite 

through series of approaches. Ibiejugba et al. (2003), 
Hasdorff (1976) and several others have shown the effect 
of positive definite matrix on the convergence rate of 
CGM. It was shown that the CGM converges to optimal 
value in at most n iteration, where n is the dimension of 
the matrix operator. This in essence shows that a non-
positive definite matrix may not terminate in at most n 
iteration. For further work see (Abdulrahman, (2007), 
Andrew and Chelsea, 1977, Enid, 1993, Lipschutz, 1987). 
 
 
 
Effect of matrix on the optimal value 
 
The operator arising from the quadratic functional (1) is 
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always symmetric and became a powerful tool to locate 
the optimal value. This symmetric matrix may be positive 
definite, negative definite, Singular point (positive-
indefinite) and Saddle point (indefinite) (Jonathan, 1994). 
While the solution of positive and negative definite are 
unique, the singular point is as a result of indefinite matrix 
which does not have a solution. The solution to saddle 
point can represent the maximum and minimum at the 
same time. The definiteness of the operator plays a vital 
role in the optimality conditions.  

A symmetric positive or negative definite matrix opera-
tor of a quadratic function guarantee a strictly convex 
function which in the first place show that it is an 
increasing or decreasing function and in turn give rise to 
a unique minimum or maximum.  

A symmetric semi positive (semi negative) definite 

matrix operator in turn gives a convex function which may 

possibly be increasing (decreasing). In this case the open  

ball center at 
x

*
 with radius r is also an optimum. This 

suggests that there may be infinitely many points within 
the domain of optimum.  

Indefinite matrix is the case where the function may be 
increasing, decreasing or neither. This is a serious case 
as we cannot initially predict the nature of result that will 
come out of the computation.  

The positive definite matrix guarantees an inverse of 
the matrix which is also unique, but this does not neces-
sarily hold for indefinite matrix (Lawrence, 1976). We then 
conclude that indefinite matrix can only affect the uni-
queness of the solution and does not necessarily mean it 
has no solution. The generated CGM by Ibiejugba et al. 
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(2003) and Hasdorff (1976) have shown the effect of 

positive definite operator on the convergence properties 

of the algorithm. 

 
Effect of matrix conversion on the objective 

functional 
 
A non-positive definite matrix can be converted to positive 
definite in a number of ways. These include positive 

definite completion problem due to Wayne et al. (1993), 
forcing of indefinite matrix due to Thomas (2001) and 
matrix transformation. 

 
Positive definite completion problem 
 
In this case we try to find in a symmetric matrix which pair 

of aij = aji can be replaced in order to get a positive 
definite matrix. Wyne Baret [12] shows that this replace-
ment must be with respect to the dimension of the matrix. 

In a 
nxn

 matrix the pair of aij = aji that will be replaced 

must be (n - 2), i.e. in a 4 x 4 matrix (4 - 2) pair can be 
replace. This replacement has a price on both the 
objective function and the corresponding system of linear 
equation. With this (n - 2) it implies that the completion 
problem can not take care of 2 x 2 operators. Consider 
the problem 
 
min imize F1 ( X )  1  x1  x2  x3  x1

2
  2x2

2
  x3

2
  2x1 x2  2x1 x3 

 
This is written in matrix form as 
 
 1 

T
    x  

1 
x T

   2  2 2 x  
 

MinimizeF1 
1  

1    
1  

 

(
 

X
 

)
 


 

1
 


 

1x
2  

2 
x

2 2 4 0 x2  
 

     

0 2 

  
 

 
1x

3   
x

3 
2
 

x
3  

 

With Barret’s result our (n - 2) here is 1 then it make 

sense to remove only a pair from the original matrix. 
 
2 2 2 2 2 x   

 

  Can be replaced by the principal  

      
 2

 4 0  
2
 4 0   

 

 

0 2 
  

0 2 
  

 

2  
x   

 

minor becomes H1  2 , H2  4  and H3  4  2x
2
 and all 

 

     

if x  
         

will be greater than zero 2 .  Choosing  x = 
 

2  2  1          2  2  2 
 

1,  
4 0 

is a positive definite completion of  
4 

 
0 
. 

 2            
2   

 

  

0  2 

            

0 

 

2 

 
 

1           2   
 

The resulting functional is               
 

min imize F ( X )  1  x  x 
2  x  x

2
  2x

2
  x

2  2x x  x x  
 

   2 1  3 1 2  3 1 2  1 3  
 

and Choosing x = 1.4,                
 

2 2 1.4           2  2 2   
 

   is a positive definite completion of    .  
 2

 4 0            
2
  4 0    

 

 

0 2 

             

0 2 

   
 

1.4            2     
  

 

  
 
 
 
The resulting functional is 
 

min imize  F ( X )  1  x  x  x  x
2  2x

2  x
2  2x x 1.4x x 

3 1 2 3 1 2 3 1 2 1 3 
 
This conversion to positive definitely affects the last term 

of the functional and the effect is be shown in the result. 
 
 
Forcing of an indefinite matrix to be positive definite 
 
This case quite unique and has a similar problem on the 
objective function and its corresponding gradient. All the 
same, an indefinite matrix can be made positive definite 
by adding a small positive number to the diagonal 
element. This is done by A  I  where I is the identity 

matrix and  is the smallest positive number. This  
number will be choosing appropriately so that the 
resulting matrix will be positive definite (Thomas et al., 
2001). In the above example, the smallest possible value  
is   0.5 and the resulting positive definite matrix is 

2.5 2 2 , 
 

 
2 4.5 0  

 

  
 

 

2 0 2.5 
 

 

  
 

 
the resulting functional becomes 
 

min imize  F ( X )  1 x  x 
2 
 x 1.25x

2  2.25x
2 1.25x

2  2x x 
2 
 2x x 

 

4 1  3 1 2 3 1 1 3 
 

 
We can see now that there is effect of 0.25 increases on 

x1
2
 , x2

2
 and x3

2
 which is half of the value added to obtain 

the positive definite matrix. 

 
Matrix transformation 
 
Transformation of matrix has played a major role in 
finding solution to some problem where the original 
problem may not. In this case a non-positive definite 
matrix A can be made positive definite by 

(2) B  AA
T
  

B is symmetric and positive definite for non-symmetric 
and/or non-positive definite matrix A . 

The gradient of functional (1) is  
(3) f ( X )  a

T
   AX  0   

The replacement A by B does not affect the solution to  
(1) i.e. equation (3) is equivalent to  
(4) f ( X )  a

T
   BX  0   

With equation (4), B is a full matrix which may affect the 

solution as the dimension of the matrix keeping 
increasing (John and Karin, 2001). The equivalent of 
equations (3) and (4) then show that they both minimize 
the functional (1). 
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Table 1. Numerical result. 
 

 Optima value Exact CGM1 CGM2 
 

Problem 1 * 0.5 0.1875 0.5 
 

 x1    
 

 * 0 0.1875 0 
 

 x2    
 

 * 0 0.1875 0 
 

 x3    
 

 f ( X 
*
 ) -0.25 -0.2813 -0.25 

 

 NITR - 1 3 
 

 * 0 0.2143 0 
 

Problem 2 x1    
 

 

0.25 0.2143 0.25 
 

 * 
 

 x2    
 

 * 0.5 0.2143 0.5 
 

 x3    
 

 f ( X 
*
 ) -0.375 -0.3214 -0.375 

 

 NITR - 1 3 
 

 * -10 0.2027 -10 
 

Problem 3 x1    
 

 

5.25 0.2027 5.25 
 

 * 
 

 x2    
 

 * 7.5 0.2027 7.5 
 

 x3    
 

 f ( X 
*
 ) -1.375 -0.3041 -1.375 

 

 NITR - 1 3 
 

 * -22 0.1714 -22 
 

Problem 4 x1    
 

 

10 0.1714 10 
 

 * 
 

 
x

2    
 

 * 18 0.1714 18 
 

 x3    
 

 f ( X 
*
 ) -3 -0.2571 -3 

 

 NITR - 1 3 
 

 * 0.5 0.2681 0.5 
 

Problem 5 x1    
 

 

4.44E-16 0.1814 6.66E-15 
 

 * 
 

 x2    
 

 * 8.88E-16 0.2143 2.36E-15 
 

 
x

3    
 

 f ( X 
*
 ) -0.25 -0.2680 -0.25 

 

 NITR - 19 3 
 

 

 
Main result 
 
In this section, we provide various forms of conversions 
and transformation of a functional with non positive 
definite matrix operator. Consider.  
Problem 1: 
 
min imize F1 ( X )  f0(1)  x1  x2  x3  x1

2
  2x2

2
  x3

2
  2x1 x2  2x1 x3 

 

 
Problem 2: 
 
min imize F1 ( X )  f0(2)  x1  x2  x3  x1

2
  2x2

2
  x3

2
  2x1 x2  2x1 x3 

 
Problem 3: 
 

min imize F (X )  f 
0(3) 

 x  x  x  x
2  2x

2  x
2  2x x 1.4x x 

 

3 1 2 3 1 2 3 1 2 1 3 
  

Problem 4: 
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min imize  F4 ( X )  f0(4)  x1  x2  x3 1.25x1

2
  2.25x2

2
 1.25x3

2
  2x1 x2  2x1 x3 

 
Problem 5: problem1 with gradient (4) 
 
 
Description of CGM algorithm 
 
The conventional conjugate gradient method is used to 

minimize the quadratic functional (1), the CGM algorithm 

is describe as follows: 
 
CGM1 
 

i choose  X0  
 

ii compute F ( X0 )  g0   
p0  g0  

iii compute 
X

i 1  Xi  i pi ; i   
 gi

T
 gi     

 

 p
T
 Ap   

 

               i i   
 

   gi 1  gi  i Api         
 

   if gi1   0 or gi 1  gi    then   
 

       g
T g 

i 1           
 

iv compute  
i1 

 
 i 1            

 

 
gi

T gi 
          

 

                
 

   
p

i1  

g
i 


 


i 1 

p
i         

 

CGM2                    
 

This  is as a  result of  the modification of the 
 

descent 
p

i1 
g

i1 


 


i1 

p
i  due to Omolehin et al. 

 

(2006), due to these results, the convergence of some 
functional is expected in at most two iterations.  

Using the two CGM algorithms to solve problems 1 - 5 
above and comparing the result with the exact value 
obtained by matrix inverse method. We have the 
following table of results: (Table 1)  

The results in this table represent the optimal value 

without f0 . This is done in order to reconcile the optimal  
value, since f0 does not take part in the minimization 

process but in the optimal value. This is the reason why 

different value of f0 are used for different problem 

presented. Now, for the exact, we have, 
 
F1 (X 

*
 ) 0.25  f0(1)  

F2 ( X 
*
 ) 0.375  f0(2)  

F3 (X 
*
 ) 1.375  f0(3)  

F4 ( X 
*
 ) 3  f0(4)  

F5 (X 
*
 ) 0.25  f0(1) 

 

      

For all the functional to be    equal i.e. 
F ( X 

*
 ) = F ( X 

*
 ) = F ( X 

*
 ) = F ( X 

*
 ) = F ( X 

*
 ) ,  

1  2 3 4 5  

Problem 1  being  the  original  functional  will  assume 
f

0(1)  0 then, f0(2)   0.125 , f0(3)  1.125 and 

f
0(4)  2.75 .     

 
DISCUSSION AND RESULT 
 
The operator of problem1 is non-positive definite, while 
the operators for the other problems are positive definite. 
The results of CGM2 obtained at third iteration are exact 
while that of CGM1 diverges as the first iteration gives the 
closest value to optimum. The result of CGM1 that is 
different came from Problem 1, Problem 2, Problem 3, 

Problem 4, Problem 5 which occurred at 19
th

 iteration 

without satisfying the termination criteria. In our next work 
we extend this to higher dimensional operator while at the 
same time reducing the difference noticed between the 
functional. 
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