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Handling uncertainty in decision making is recently receiving considerable attention by researchers. 
Advances in group Fuzzy analytic network process (ANP) are discussed to support decision making 
because of the complexity and vagueness under uncertainty. An adaptive group Fuzzy ANP group 
decision support system (DSS) under uncertainty is put forth that makes up for some deficiencies in the 
conventional ANP. Fuzzy judgments are firstly used when it is difficult to characterize the uncertainty 
by point-valued judgments due to partially known information, and a bipartite graph is formulated to 
model the problem of group decision making under uncertainty. Then, a Fuzzy prioritization method is 
proposed to derive the local priorities from missing or inconsistent Fuzzy pairwise comparison 
judgments. As a result of the unlikeliness for all the decision makers to evaluate all elements under 
uncertainty, an original aggregation method is developed to cope with the situation where some of the 
local priorities are missing. Finally, an evaluation of petroleum contaminated site remedial 
countermeasures using the proposed group Fuzzy ANP, indicates that the presented group DSS can 
effectively handle uncertainty and support group decision making with high level of user satisfaction. 
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INTRODUCTION 

 
From the dialectical point of view, uncertainty is absolute, 

and certainty is relative (Sahistein and Erin, 2006). Un-

certainty is an essential component of every day life, and 

has become an important characteristic of modern deci-sion 

support systems (DSS). There are many decision making 

methods proposed by various authors to model uncertainty 

(Yager, 2004; Ekel et al., 2008; Zarghami and Szidarovszky, 

2009; Hosseini et al., 2010; Mishalani and Gong, 2009; 

Reneke, 2009). However, it is hard to find any general 

definition of uncertainty in these literatures on „uncertainty‟ 

modeling. In decision logic, the definition of uncertainty by 

Zimmermann (2000) is generally accepted  
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as a standard. He focuses on the human- related, 
subjective interpretation of uncertainty, which implies that 
in a certain situation, a person does not dispose 
information, which is quantitatively and quaitatively appro-
priate to describe, prescribe or predict deterministically 
and numerically a system, its behavior or other 
characteristics. In this sense, uncertainty could be 
interpreted as a state where decision makers can not 
articulate their preferences clearly due to incomplete 
information or knowledge, the vagueness of the human 
thinking, and the inherent complexity and ambiguity of the 
decision environment. 

Group decision making is an important characteristic of 
modern uncertain decision problem (Levy and Taji, 2007). 

Organizations often promote the use of “roundtable” 
meetings in order to facilitate group decision making. The 

views of one agency may differ from others, but this will 



 
 
 

 

often be to the advantage of the early stages of decision 

process since it provides a useful forum for all assumptions 

to be questioned and refined. The end product is thus more 

realistic. Group decision making handling uncertainty shares 

have two unique characteristics. First, the group must often 

make many complex and multi-faceted decisions in a short 

period of time, thereby contributing to a high “decision load”. 

Second, the group decision must often be made with 

incomplete information (both in terms of quantity and 

quality), whereas, these decisions usually have potentially 

serious consequences. Maier (1963) uses term “decision 

quality” to describe the degree to which a wrong decision 

could lead to catastrophic results. According, the 

development and application of group DSS could be 

extremely valuable in the uncertain environment (Ma and Lu, 

2010; Wang et al., 2007; Huang et al., 2006). 

 

The Analytic Hierarchy Process (AHP) and the Analytic 
Network Process (ANP) have great potential for use in 
many practical group decision making problems under 
uncertainty. For example, Tseng (2010) develops a 
hybrid MCDM model with the aid of ANP to evaluate firm 
environment knowledge management in uncertainty. AHP 
represents a framework with a uni-directional hierarchical 
AHP relationship (Ding, 2010), while the ANP feedback 
approach replaces hierarchies with networks in which the 
relationship between levels are not easily represented as 
higher or lower, dominator or subordinate, direct or 
indirect (Meade and Sarkis, 1999). Moreover, ANP is 
more accurate in complex situation due to its capability of 
modeling complexity and the way in which comparisons 
are performed. Hence, the ANP can be considered as a 
more general form of the AHP in which dependencies 
and feedbacks between elements of a decision can be 
modeled. 

Although ANP is one of the most complete and 

comprehensive multi-attribute decision making methods as it 

encompass the criteria and alternatives in an integrated 

manner, a great drawback of this method is the pairwise 

comparison section. This section consists of deterministic 

comparisons, while it is relatively difficult for decision makers 

to provide exact numerical values for all the comparison 

ratios, due to incomplete information or knowledge, 

complexity and ambiguity within the decision environment, or 

lack of an appropriate measure units and scale. Therefore, 

exact numerical values are replaced by Fuzzy judgments for 

insufficiency and imprecision to incorporate the vagueness 

of human being in many researches (Razmi et al., 2009; 

Tuzkaya and önüt, 2008; Tang, 2009). Moreover, many 

Fuzzy prioritization methods (Huang, 2008; Mikhaiov, 2000, 

2003, 2004) are adopted to model the ambiguity and 

imprecision asso- ciated with the Fuzzy pairwise comparison 

process, and applied to increase the capabilities of the 

AHP/ANP (Mikhailov and Singh, 2003; Da deviren and 

Yüksel, 2010).  
In group decision under uncertainty, it is often necessary 

to combine individual preference to form a group response. 

 
 
 
 

 

There are mainly four basic approaches to estimate 
group priorities of elements in AHP/ANP (Condon, 2003; 
Forman and Peniwati, 1998). At first, the decision group 
is required to reach consensus on every judgments in the 
matrix. Saaty and Vargas (2007) note that to achieve a 
decision with which the group is satisfied, it is necessary 
for the judgments to be homogeneous. If consensus is 
not possible, the second approach is to use a vote on the 
various judgments proposed to pick a compromise for the 
value of the group entry. A stream of researches has 
used these basic techniques for deriving group priorities 
in ANP (Liu and Lai, 2009; Nekhy et al, 2009; Boran and 
Goztepe, 2010). If the group is unwilling or unable to vote 
or can achieve a consensus under uncertainty, then a 
third group solution can be obtained by aggregating the 
judgments of the decision makers for each set of pairwise 
comparisons into a new set of aggregated group 
judgments at each level of comparisons. 

The aggregated group judgments are considered as 
judgments of a „new individual‟ and the priorities of this 
individual are derived as a group solution. However, 
applying this method requires a full set of comparison 
judgments. In the practical group decision under 
uncertainty, it is unlikely for all decision makers to give all 
the comparison judgments, and then the application of 
this method is problematical, since usually the group 
members have different level of expertise. A fourth group 
aggregation approach is aggregating individual priorities 
into group preferences. Individual priority vectors from 
comparison judgment matrices can be easily derived by 
Fuzzy prioritization methods.  

Nevertheless, the subsequent aggregation process 

become intractable, for some of the resulted individual, 

priority vectors are incomplete when the exact individuals 

are unwilling or unable to evaluate all the elements under 

uncertainty. Therefore, there are challenges associated with 

each of these four approaches, and an appropriate group 

prioritization method should be developed to extend ANP to 

deal with uncertain decision making problems.  
Hence, Fuzzy sets theory and group ANP method are 

integrated to investigate a method for designing a group 
DSS under uncertainty. The group DSS under uncertainty 
formulated in this paper comprises of the following steps.  

First, ANP instead of AHP is proposed due to the fact 
that ANP can accommodate the variety of interactions, 
dependencies and feedback between higher and lower 
level elements. Second, Fuzzy judgments are introduced 
in the pairwise comparison of ANP to make up the 
deficiency in order to capture the right judgments of 
decision makers in the conventional ANP.  

Third, a Fuzzy prioritization method is proposed to 
derive the local priorities from uncertain pairwise 
comparison judgments. Fourth, the elicited local priorities 
are further aggregated into group priorities by an original 
aggregation method, which can cope with the situations 
where some of the local priorities are missing when the 
decision makers do not evaluate some of elements under 



 
 
 

 

uncertainty. 

 

PROBLEM OF GROUP DECISION UNDER 

UNCERTAINTY MODELING 
 
Fuzzy judgments have been widely used in ANP to express 

the subjective uncertainty in preference. Consider 

a group of N decision makers DMk (k  1,2, , N ) evaluate n 

elements (clusters, criteria or alternatives) Ei (i  1,2, , n) . 

Each  decision maker provides a  set 


k 
~ 

 

 aijk  of 
 

m  n(n 1) 2 fuzzy comparison judgments, 
 

i  1,2,  , n 1  , j  2,3,  , n ,  j  i  , k  1,2,  , N , where 
  

~ represents the relative importance of the decision 
aijk  
element  Ei over E j , assessed by the kth decision maker. 

Triangular  fuzzy  numbers 
~ 

are  used  to 
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represent the fuzzy judgments, where lijk , mijk and uijk are the 

lower, modal and upper bounds respectively, satisfying 
 
a reciprocity condition analogous to that of standard 

pairwise comparison matrices. When these judgments 

are consistent, there are many local priority vectors, 

whose elements ratios satisfy the inequalities. 
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In inconsistent cases, however, a priority vector that 

satisfies all inequalities (1) simultaneously, does not exist.  
But  it is  reasonable  to  yields  a  crisp  local  priority  
vector  k  (1k ,2k , ,nk )T , such that the priority ratios ik 

kjapproximately satisfy the initial fuzzy judgments. 
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~ 
where the symbol  denotes „approximately less or equal 

to‟. 
 
However, in most uncertain decision problem, it is unlikely 

for all decision-makers to provide all the comparisons among 

elements or evaluate all elements due to incomplete 

information or knowledge, the vagueness of human thinking, 

and the inherent complexity and uncertaintainty of decision 

environment. Let ik denote the  
local priority of decision maker DMk evaluating element Ei . 

Note that i
k
  0 holds whenever DMk evaluate Ei and 

otherwise ik  0 . Consider a bipartite graph with two node 

sets K  1,2, , N and I  1,2, , n, corresponding to decision 

makers and elements, respectively, and the arc (DM k , Ei ) ,  
where k  K and i  I , exists if only DMk evaluate Ei . In 

other words, the arc (DM k , Ei ) exists if and only if ik  0 . 

  
  

 
 

 

To clarify, consider the case of four decision- makers and 
three elements, as shown in Figure 1.  

The bipartite graph of group decision under uncertainty, 

as showed in Figure 1, illustrates the group decision‟s 

evaluation situations using Fuzzy judgments under 

uncertainty as follows: 
 
(i) Decision maker DMk evaluates all elements by providing a 

full set of pairwise comparison judgments, and all the arcs 

are solid. For example, DM1 and DM 3 make all the 
 
pairwise comparisons judgments of all elements, and it 
follows that all the local priorities are positive.  
(ii) Decision maker  DMk   evaluates all elements by  
comparing some pairs of elements and neglecting other 

pairs. For example, DM 2 provides the relative importance  
of the element E1 over E 2 , and E1 over E 3 , and does not 

compare the elements E 2 with E 3 directly. The relationship 

between DM2 and E1 is denoted by solid arc, and the arcs 

(DM2 , E2 ) and (DM 2 , E3 ) are can be denoted by dotted ones. 

While DM 2 makes fuzzy pairwise comparison 
 
judgments with missing information and all the local 
priorities are positive.  
(iii) Decision maker DMk evaluates some of the elements, 

but neglects other elements. For example, DM 4 only 

estimates the relative importance of the element E1 over E 

3 , without any comparisons about the element E 2 .  
Obviously DM 4 provides a Fuzzy pairwise comparison matrix 

without any preference information about the element E 2 , it 

follows that the local priorities 14 and 34 are  
positive and the other local priority 24 is zero.  
(iv) Decision maker  DMk performs inconsistent judgments. 

 

The Fuzzy prioritization method developed by Mikhailow 
is proposed to deals with the aforementioned situations of 
Fuzzy judgments (in (ii), (iii) and (iv)), where there are 
missing or inconsistent judgments in the Fuzzy pairwise 
comparison matrices for its advantage of measuring 
consistency indexes for the Fuzzy pairwise comparison 
matrixes.  

After the local priorities are derived, the combination of 
individual priorities into group priorities is considered. An 
original aggregation method that uses nonlinear 
programming is developed to cope with the situation in 
(iii) where there are zero local priorities. 
 

 

GROUP FUZZY ANP UNDER UNCERTAINTY 

 

Fuzzy prioritization method 

 

The Fuzzy prioritization approach formulates the derivation 

of priorities from Fuzzy judgments as an optimi-zation 

problem that maximizes the “the decision-maker‟s overall 

satisfaction with the final solution. Membership 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Bipartite graph of group decision under uncertainty. 

 
 

 

functions that represent the decision-maker‟s satisfaction 

with different crisp solution ratios ik kjcould be  
introduced. Each crisp priority vector  k satisfies the 

double-side inequality (2) with some degree, which can 

be measured by a membership function, linear with 

respect to the unknown ratio ik kj. 
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The linear membership function (Equation (3)) represents 

an L-Fuzzy set L  (,1] , which is not bound from above 

and blew, and the shape of it is shown in Figure 2. It is seen 

that this membership function is linearly increasing over the 

interval (, mijk ] , and linearly decreasing over the  
interval [mijk , ) . The membership function has a maximum 

value maxL  1 at ik kjmijk.The degree of membership 
 
 ijL ( k ) is positive over the range [lijk , uijk ] , when the decision 

maker is satisfied, the corresponding priority vector  k ,
 
and  ijL ( k ) is negative when i

k 


k
jlijkori

k 


k
juijk,which indicates dissatisfaction with the solution. 

The solution to the prioritization problem by Fuzzy 

prioritization method is based on two main assumptions. 

The first one requires the existence of non-empty Fuzzy 

feasible area pk on the (n 1) -dimensional simplex 
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Figure 2. Member function, linear in the ratio space. 
 

 

Q n  1    
 

(  1
k
  ,  2

k
  , ,  n

k
  ) 

 

i
k
  

n 
 

i
k
  

 
 

(4) 

 

   
 

  0 , 1  
 

        i  1      
 

           
 

 

Defined as an intersection of the membership functions, 

similar to Equation (3) and the simplex hyperplane in 

Equation (4), the membership function of the Fuzzy 

feasible area pk is given by: 
 


 pk ( 
k
 )  min  ij ( i

k
 , 

k
j ) 

 

i  1,2,   , n; j  2,3,   , n; j  j. (5) 
 

 
 

 ij  
 

 
By defining the membership functions in Equation (3) as L-

Fuzzy sets L  (,1] , the assumption of non-emptiness  
of pk on the simplex could be relaxed. If the Fuzzy 



 
 
 

 

judgments are very inconsistent, then  pk ( k ) could take 

negative values for all normalized priority vectors k Qn


1 .  
The second assumption of the Fuzzy prioritization method 

specifies a selection rule, which determines a priority vector, 

having the highest degree of membership in the aggregated 

membership function as seen in Equation (5). It can easily 

be proved  pk ( k ) is a convex set, so  
there is always a priority vector *k  Qn1 that has a 

maximum degree of membership: 
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The maximum prioritization problem (6) can be 

represented in the following way: 
 

max imise 
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Taking into consideration the specific form of the 

membership functions (Equation 3), the problem 

(Equation 7) can be further transformed into a bilinear 

program of the type:  

maximise k    
 

subject to ( m ijk    l ijk  )  
k
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The optimal value 


*
k
 , if it is positive, indicates that all 

solution ratios completely satisfy the Fuzzy judgments. For 
example, lijk  (i

k
* , 

k
j* )  uijk , which means that the initial set  

of Fuzzy judgments is rather consistent. A negative value 

of *k shows that the solutions ratios that approximately 

satisfy all the double-side inequalities (Equation 3). For 

example, the Fuzzy judgments are strongly inconsistent.  
Therefore, the optimal value *k can be used for measuring 

the consistency of the initial set of Fuzzy judgment. 

 

Nonlinear programming methods to group 

aggregation under uncertainty 
 
In order to aggregate individual priorities into group 

priorities, compromise is necessary. Therefore, the main 

objective of the decision group can be transformed to 

  
  

 
 

 

generate a compromise solution that minimizes the 
inconformity existing between individual priorities and 
group priorities. Nonlinear programming methods can be 
applied to minimize the inconformity to maximize the 
unanimous group priorities. As shown in section 2, in the 
uncertain decision environment, once the decision maker 
DMk evaluates element Ei , the arc (DM k , Ei ) exists, and the 

local priority 


i
k

  


 

0
 , otherwise, the arc (DM k , Ei ) does not 

exist,  and the  local  priority ik   0  .  Based on  these 

observations, an aggregation method is proposed by 

which the group priority vector for elements  
 g  ( g1 , g 2 , , gn )T is obtained as the solution g

*
 to the 

following nonlinear programming problem:
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Theorem 1 

 

When the decision maker DMk evaluates element 
E

i , for 

all 
i
 , the nonlinear programming problem (9) has a global 
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Proof 
 

See the appendix A. 
 

 

Steps of group Fuzzy ANP model under uncertainty 

 

The process of applying the group Fuzzy ANP under 
uncertainty that combines Fuzzy prioritization method, 

nonlinear programming for group decision and ANP 

comprises of the following main steps: 

 

Step 1: Identify alternatives, criteria and clusters to be 
used in the proposed model.  
Step 2: Configure a network structure including clusters, 

criteria, alternatives and dependences among these 



 
 

 

 RI


 
 

EI WMI SMI VSMI AMI  
1.0 

 
 
 
 
 
 
 
 

 

1/2 1 3/2 2 5/2 3 7/2 
RI 

 

 
 

 
Figure 3. Linguistic scale for relative importance. 

 

 
Table 1. Linguistic scale for relative importance.  

 
Linguistic scale for importance Triangular fuzzy scale Triangular fuzzy reciprocal 

scale   
Equally important (EI) 

 
Weakly more important (WMI) 

 
Strongly more important (SMI) 

 
Very strongly more important (VSMI) 

 
Absolutely more important (AMI) 

  
 

(1 2,1,3 2) (2 3,1,2) 

(1, 3 2 ,2) (1 2 , 2 3,1) 

(3 2,2,5 2) (2 5 ,2, 2 3) 

(2,5 2,3) (1 3, 2 5,1 2) 

(5 2,3,7 2) (2 7,1 3,2 5)  
 

 

 

components. 
Step 3: Construct pairwise matrices of the components 
with Fuzzy judgments. The Fuzzy scale regarding relative 
importance to measure the relative priorities is given in 
Figure 3 and Table 1. Similarly scale is proposed by 
Kahraman et al. (2006) and used for solving Fuzzy 
decision-making problems (Kahraman et al., 2006; Razmi 
et al., 2009) in the literature. This scale will be used in the 
Fuzzy prioritization approach.  
Step 4: Determine the local priorities and consistency 
index from each matrix using the fuzzy prioritization 
method.  
Step 5: Check the consistency index. If it is fairly 
accepted, continue, otherwise return to step 3.  
Step 6: Aggregate local priorities into group priorities 
using nonlinear programming approach as explained. 
Step 7: Fill the super matrix with the elicited group 
priorities to form unweighted supermatrix.  
Step 8: Obtain weighted supermatrix by multiplying the 
unweighted supermatrix by the corresponding cluster 
priorities, and then adjusting the resulting supermatrix to 
column stochastic.  
Step 9: Limit the weighted supermatrix by raising it to 
sufficiently large power so that it converges into a stable 
supermatrix (all columns being identical).  
Step 10: Normalize the scores of alternatives from the 

limit weighted supermatrix into final priorities. 

 
 

 

Petroleum contaminated site remedial 

countermeasures example 
 
In this section, an evaluation of petroleum contaminated 
site remedial countermeasures is considered to demon-
strate how the proposed model is applied. A Chinese 
petroleum enterprise intended to select the most 
appropriate remedial alternatives for a contaminated site 
caused by a petroleum pipeline leak. In this decision 
contest, four key decision makers DMk (k 1,2, ,4) are autho-  
rized to prioritize the feasible remedial alternatives and 
select the best countermeasure for the site. Five remedial 
countermeasure strategies are briefly described in Table 
2. Similar decision problem of choosing the best 
contaminated site remedial countermeasure is given in 
Promentilla (2006) study‟s. The evaluation criteria to 
choose the best remedial alternative for the contaminated 
site are defined as followed: C1 , the social acceptability of  
the countermeasures according to the perception of 

stakeholders; C2 , implementability in terms of  
administrative and technological feasibility ; C3 , financial  
affordability with regards to the overall cost of the clean-

up; C4 , environmental effectiveness to protect public health 

and environment resources . In the next step, criteria are 

grounded into two clusters: External environment  
(including C1 and C4 ), and internal capabilities (including 



  
 
 

 
Table 2. The remedial countermeasures in this illustrative example. 

 

Remedial Site remediation containing Prevention of contaminant 
Remediation of surrounding area  

alternatives the waste layer spreading  

 
   

Alternative 1 ( A1 ) 
 

 

Alternative 2 ( A2 ) 

  
In situ disposal by incineration is a commercial possibility, if the In situ remediation (e.g. enhanced 

 

volume of the petroleum-contaminated soil is large enough bioremediation, natural attenuation) 
 

Complete removal of waste from the petroleum-contaminated soil 
In situ remediation (e.g. enhanced  

from the site, and off-site treatment and disposal of the excavated  

bioremediation, natural attenuation)  

waste  

 
  

 

 
Alternative 3 ( A3 ) 

 
 

 

Alternative 4 ( A4 ) 

  
In situ remediation (e.g., 

enhanced bioremediation, soil 

washing, etc.) 

 
In situ remediation (e.g., 

enhanced bioremediation, soil 

washing, etc.) 

 
 
Capping and plume control 

(e.g., groundwater extraction) 

 

Capping and vertical cut-off 

wall (e.g., sheet piling, 

chemical grout, etc.) 

 
 
In situ remediation (e.g. enhanced 

bioremediation, natural attenuation) 
 

 
In situ remediation (e.g. enhanced 

bioremediation, natural attenuation) 

 
 

Alternative 5 ( A5 ) 
  
In situ remediation (e.g. enhanced bioremediation, natural attenuation)  
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A

5 
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Figure 4. Network of petroleum contaminated site remedial countermeasures selection. 
 

 

C2 and C3 ). The dependencies between criteria are as 

follows: 
 
1. Social acceptability, financial affordability and 

environmental effectiveness depends on implementability; 

2 .Implementability and financial affordability are directly 
affected by social acceptability; 
3. Financial affordability influence environmental 
effectiveness; and 
4. Social acceptability depends on environmental 

effectiveness. 

 
 

 

Moreover, it must be noted that all alternatives are 
influenced by the four aforementioned defined criteria. 
Regarding this relation, the network of the problem is 
formed as shown in Figure 4. The solid arrows represents 
the dependencies within the clusters resulted from criteria 
dependencies within the clusters, and the dotted arrows 
show connections between criteria within one cluster or 
two different clusters. 

The following pairwise comparison matrices are performed 

with respect to the aforementioned network and are formed 

by the four key decision makers by using the 



 
 
 

 
Table 3. Local priorities and pairwise comparison matrix of alternatives with respect to social acceptability. 

 

 Social acceptability A1 A2 A3 A4 A5  Local priorities 
 

 DM1        
1

*  0.629 
 

 A1  (1,1,1) (1 2,2 3,1)    (2 3,1,2) 0.186 
 

 
A

2  (1,3 2,2) (1,1,1) (1 2,1,3 2) (1,3 2,2)   0.235 
 

 
A

3   (2 3,1,2) (1,1,1) (1 2,1,3 2) (1 2,1,3 2) 0.199 
 

 A4   (1 2,2 3,1) (2 3,1,2) (1,1,1) (1 2,2 3,1) 0.168 
 

 
A

5  (1 2,1,3 2)  (2 3,1,2) (1,3 2,2) (1,1,1)  0.212 
 

 DM 
2 

       
2

  0.653 
 

         * 
 

 A
1  (1,1,1) (2 3,1,2) (2 3,1,2) (1 2,2 3,1)   0.182 

 

 A2  (1 2,1,3 2) (1,1,1) (1 2,1,3 2) (2 3,1,2) (1 2,1,3 2) 0.205 
 

 
A

3  (1 2,1,3 2) (2 3,1,2) (1,1,1) (2 3,1,2) (2 3,1,2) 0.206 
 

 
A

4  (1,3 2,2) (1 2,1,3 2) (1 2,1,3 2) (1,1,1) (1,3 2,2) 0.232 
 

 A5   (2 3,1,2) (1 2,1,3 2) (1 2,2 3,1) (1,1,1)  0.175 
 

 DM3        *
3

  0.745 
 

 A1          
 

 A2   (1,1,1) (1,3 2,2) (1,3 2,2) (3 2,2,5 2) 0.342 
 

 A3   (1 2,2 3,1) (1,1,1) (2 3,1,2) (2 3,1,2) 0.228 
 

 A4   (1 2,2 3,1) (1 2,1,3 2) (1,1,1) (1,3 2,2) 0.249 
 

 A5   (2 5,1 2, 2 3) (1 2,1,3 2) (1 2,2 3,1) (1,1,1)  0.181 
 

 DM 4        *
4

  0.753 
 

 A1          
 

 A2   (1,1,1) (2,5 2,3) (2 3,1,2)   0.405 
 

 A3   (1 3,2 5,1 2) (1,1,1) (2 7,1 3,2 5)   0.154 
 

 A4   (1 2,1,3 2) (5 2,3,7 2) (1,1,1)   0.441 
 

 A5          
  

 

 

scale given in Figure 3 and Table 2. All components of 
the alternatives cluster are compared, pairwisely, with 
respect to each of the criteria. Implementability and 
financial affordability are compared with respect to social 
acceptability. In addition, social acceptability and 
environmental effectiveness are compared with respect to 
implementability. With respect to external environment; 
alternatives, internal capabilities and external environment 
clusters are compared, pairwisely. Finally, alternatives, 
external environment, and internal capabilities clusters 
are compared with respect to internal capabilities. The 
Fuzzy prioritization approach, as explained, is used for 
calculating local priorities, and the nonlinear programming 
method, as introduced, is applied to aggregate the local 
priorities into group priorities. The comparison matrices of 
the alternatives with respect to social acceptability are 
demonstrated in Table 3. The local priorities from the 
comparison matrix performed by DM 1 are calculated by 

solving the following model whit Lingo V12.0 software: 
 
max   
 
subject to 

 

 

(1 6) 2 1 (1 2)2  0 ; 

(1 3) 2 12  0 ; 

(1 3) 5 1 (2 3)5  0 ; 

 5 1 25  0 ;

(1 2) 32  (1 2)3  0 ; 

(1 2) 32  (3 2)3  0 ; 

(1 2) 4 2 4  0 ; 

(1 2) 4 2  24  0 ; 

(1 2) 4 3 (1 2)4  0 ; 

(1 2 )     4   3  (3 2 )   4  0 ; 

(1 2)53(1 2)50 ;  

(1 2)53(3 2)50 ;  

(16)54(1/2)50;  

(1/3)5450; 

12 3 4  5 1 ;  
end 



  
 
 

 
Table 4. Local priorities under five criteria for alternatives.   
Social acceptability 1 2 3 4 Implementability 1 2 3 4 

 

 DM DM DM DM  DM DM DM DM 
 

          
 

A1 0.186 0.182   A1 0.258  0.354 0.491 
 

A
2 0.235 0.205 0.342 0.405 

A
2 0.123   0.165 

 

A
3 0.199 0.206 0.228 0.154 

A
3   0.250  

 

A4 0.168 0.232 0.249 0.441 A4 0.362 0.550 0.396 0.344 
 

A
5 0.212 0.175 0.181  

A
5 0.257 0.450   

 

Financial DM DM DM DM Environmental DM DM DM DM 
 

affordability 
1 2 3 4 

effectiveness 
1 2 3 4 

 

        
 

A1 0.173 0.229  0.305 A1 0.100  0.220 0.023 
 

A
2 0.102 0.200 0.165 0.168 

A
2 0.267 0.354 0.250 0.322 

 

A3 0.252 0.203 0.344 0.371 A3 0.229 0.276  0.311 
 

A4 0.242 0.177 0.491 0.156 A4 0.268 0.310 0.278 0.223 
 

A5 0.231 0.191   A5 0.136 0.060 0.252 0.121 
 

 

 
Table 5. Group priorities under five criteria for five alternatives. 

 

  A1 A2 A3 A4 A5 Ranking 

 Social acceptability 0.140 0.275 0.175 0.250 0.160 A2   A4   A3   A5   A1 

 Implementability 0.299 0.042 0.046 0.326 0.251 A4   A1   A5   A3   A2 

 Financial affordability 0.201 0.133 0.267 0.240 0.159 A3   A4   A1   A5   A2 

 Environmental effectiveness 0.092 0.281 0.249 0.253 0.125 A2   A4   A3   A5   A1  
 

 

Thus, the local priority vector from the aforementioned  
model  is calculated as 1  (0.186,0.235,0.199,0.168,0.212)T   .  
Consistency index  (1* ) is calculated as 0.629 and this rate  
suggests that the Fuzzy comparison matrix is consistent. 

Pairwise comparison matrices performed by DM 2 ,  
DM 3 and DM 4 for the alternatives with respect to social 
 
acceptability are given in Table 3 together with the 

calculated local priorities and consistency index. Table 4 

illustrates the local priorities provided by the four key  
decision makers DMk (k 1,2, ,4) for the alternatives with 

respect to all four criteria.  
Since the decision making group has evaluated all the 

five alternatives with respect to each criterion as shown in 
Table 4, the group priorities of them are uniquely determined 
(according to Theorem 1). Table 5 shows the group 
priorities under each criterion aggregated by the optimi-
zation problem in Equation (9). According to the ranking 
of all alternatives under different criterion, there is no 
dominating alternative for all the criteria. For example, A2 

is perceived to dominate in terms of environmental  
effectiveness and social acceptability, but its ratings are the 

lowest in terms of financial affordability and imple-mentability 

because of its potentially high clean- up cost, as well as, 

difficulties in treatment facility for the excavated waste. On 

the hand, A3 has the least clean-up cost, but it 

 
 

 

may also have some difficulties in the effectively control of 

the plume. A1 has good performances in terms of financial  
affordability and implementability. However, its desirability 
is the lowest in terms of environmental effectiveness and 

social acceptability. In the case of A4 , it is perceived to  
dominate in terms of implementability, but its desirability 

is relatively lower with respect to the other criteria in 

which A2 and A3 dominates. In order to further prioritize these  
five alternatives for remediation design and analysis, it is 
necessary to combine the pairwise comparisons of 
criteria and clusters to evaluate these alternatives and 
measure their overall relative desirability.  

Comparison matrices of the internal capability cluster 
with respect to social acceptability, and the external 
environment cluster with respect to implementability, as 
shown in Tables 6 - 7, are performed by the four key 
decision makers by reaching consensus on every entry, 
since there is only one pair of Fuzzy judgment in each 
comparison matrix. The priorities listed in Tables 6 – 7, 
are also calculated by the Fuzzy prioritization method and 
the consistency indices are found to be one. For cluster 
comparison, the resulted matrices together with their local 
priorities, consistency indices and group priorities are 
shown in Tables 8 – 9. 

The unweighted supermatrix is formed by putting the 

group priorities in the corresponding block of the matrix 



 
 
 

 
Table 6. Group priorities and comparison matrix of the internal capabilities cluster with respect 

to social acceptability.  
 

Social acceptability Implementability Financial affordability Group priorities  

implementability (1,1,1) (2,5 2,3) 0.714  

financial affordability (1 3,2 5,1 2) (1,1,1) 0.286  
 
 

 

Table 7. Group priorities and comparison matrix of the external environment cluster with respect to 

implementability.  
 

Implementability Social acceptability Environmental effectiveness Group priorities 

Social acceptability (1,1,1) (1 2,1,3 2) 0.500 

Environmental effectiveness (2 3,1,2) (1,1,1) 0.500  
 
 

 
Table 8. Priorities and comparison matrix of the clusters with respect to external environment.  

 
 External environment Alternatives Internal capabilities External environment Local priorities  

 

 DM       
1

  0.333  
 

 1      *  
 

 Alternatives (1,1,1) (1 3,2 5,1 2) (2 3,1,2) 0.226  
 

 Internal capabilities (2,5 2,3) (1,1,1) (2 3,1,2) 0.484  
 

 External environment (1 2,1,3 2) (1 2,1,3 2)  (1,1,1)  0.290  
 

 DM 
2 

     
2

  1.000  
 

       *  
 

 Alternatives (1,1,1)  (1 2,1,3 2) 0.334  
 

 Internal capabilities  (1,1,1) (2 3,1,2) 0.333  
 

 External environment    (1,1,1)  0.333  
 

 DM       
3

  0.802  
 

 3      *  
 

 Alternatives (1,1,1) (2 7,1 3, 2 5) (1 2,1,3 2) 0.200  
 

 Internal capabilities  (1,1,1) (2,5 2,3) 0.578  
 

 External environment    (1,1,1)  0.222  
 

 DM       
4

  1.000  
 

 4      *  
 

 Alternatives (1,1,1) (1 3, 2 5,1 2)    0.222  
 

 Internal capabilities  (1,1,1) (2,5 2,3) 0.556  
 

 External environment    (1,1,1)  0.222  
 

 Group priorities 0.245 0.488 0.267   
  

 
 

 

(Table 10). Then, the weighted supermatrix is obtained by 

multiplying unweighted supermatrix by their corres-ponding 

group priorities of clusters (Tables 8 - 9), and then adjusted 

to be column stochastic. Consequently, the limit supermatrix 

is the stable powered form of that of the weighted. Tables 11 

and 12 demonstrate the weighted and the limit 

supermatrices, respectively. It must be noted that the first 

five columns of the relative supermatrices are zero, because 

the decision criteria does not depend on 

 
 
 

 

the alternatives as can seen in Figure 3. 
In Table 12, values in rows in front of the alternatives are 

the final scores of the alternatives, and can be normalized 

into final priorities, as shown in Table 8. Considering the 

final priorities final(0.184,0.177,0.193.0.274,0.172)

 of all  
alternatives, their ranking is as follows: A4 A3 A1 A2 A5 . 

Based on this analysis, A4 is identified as the most 

preferred 



  
 
 

 
Table 9. Priorities and comparison matrix of clusters with respect to internal capabilities.  

 
 Internal capabilities 

Alternatives Internal capabilities External environment 
local priorities  

 

 DM 
1
  0.708  

 

     
 

 1    *  
 

 Alternatives (1,1,1) (1 2,2 3,1) (1 2,1,3 2) 0.282  
 

 Internal capabilities (1,3 2,2) (1,1,1) (3 2,2,5 2) 0.464  
 

 External environment (2 3,1,2) (2 5,1 2,2 3) (1,1,1) 0.254  
 

 DM    
2
 1.000  

 

 2    *  
 

 Alternatives (1,1,1) (3 2,2,5 2) (3 2,2,5 2) 0.500  
 

 Internal capabilities (2 5,1 2,2 3) (1,1,1) (1 2,1,3 2) 0.250  
 

 External environment (2 5,1 2,2 3) (2 3,1,2) (1,1,1) 0.250  
 

 DM    
3
  1.000  

 

 3    *  
 

 Alternatives (1,1,1)  (1 2,1,3 2) 0.334  
 

 Internal capabilities  (1,1,1) (2 3,1,2) 0.333  
 

 External environment (2 3,1,2) (1 2,1,3 2) (1,1,1) 0.333  
 

 DM    
4
  0.796  

 

 4    *  
 

 Alternatives (1,1,1) (5 2,3,7 2) (2,5 2,3) 0.578  
 

 Internal capabilities (2 7,1 3, 2 5) (1,1,1) (1 2,1,3 2) 0.200  
 

 External environment (1 3, 2 5,1 2) (2 3,1,2) (1,1,1) 0.222  
 

 Group priorities 0.424 0.312 0.264   
  

 
 
 

Table 13. Final scores and ranking of the alternatives.  
 

 
Alternatives 

Final scores 
Ranking  

 (Normal values)  

   
 

 A1 0.184 3 
 

 A2 0.177 4 
 

 A3 0.193 2 
 

 A4 0.274 1 
 

 A5 0.172 5 
 

 

 

alternative, although A2 is the most preferred alternative 
 
according to environmental effectiveness and social 

acceptability, and A3 is the most favorable alternative with 

respect to cost reduction. The Top performance of A4 isdue  
to its excellent implementability in terms of administrative 

and technological feasibility, good cost reduction, 

appropriate effectiveness to protect public health and 

environment resources, and medium social acceptability. 
 

 

Conclusions 

 

A group DSS under uncertainty using group Fuzzy ANP 

approach has been systematically developed and applied 

in the evaluation of petroleum contaminated site remedial 

 
 

 

countermeasures. In order to handle uncertainty, a bipartite 

graph is firstly formulated to model the problem of group 

decision making under uncertainty. Then, a group Fuzzy 

ANP approach combining Fuzzy prioritization method, 

nonlinear programming and ANP is designed and applied to 

the group DSS for ranking the alternatives while taking 

uncertainty into account. Finally, the designed group DSS is 

used to evaluate petroleum contaminated site remedial 

countermeasures for an oil company in China, and the 

proposed group DSS demonstrates great effectiveness in 

handling uncertainty and supporting group decision making 

with high level of user satisfaction.  
The formulated group Fuzzy ANP approach for group 

DSS has the following improvements compared with the 

conventional ANP: 
 
1. Due to partially known information, fuzzy judgments are 

more adaptive to characterize the uncertainty compared with 

point-valued judgments in the conventional ANP. 

2. A Fuzzy modification of the ANP is proposed to derive 
local priorities form uncertain Fuzzy pairwise comparison 
judgment.  
3. An original aggregation method is integrated into the 
group DSS to cope with the situation where some of the 
local priorities are missing for the likeliness in that 
decision makers do not evaluate some of the elements 
under uncertainty.  
4. Decision makers can make judgments individually, their 



 
 
 

 
Table 10. Unweighted supermartrix to select the best petroleum contaminated site remedial countermeasure.  

 
  

A1 A2 A3 A4 A5 
Environmental Social Financial 

Implementability 
 

 

  
effectiveness acceptability affordability  

 

         
 

 A1 0.000 0.000 0.000 0.000 0.000 0.092 0.140 0.201 0.299  
 

 A2 0.000 0.000 0.000 0.000 0.000 0.281 0.275 0.133 0.042  
 

 A3 0.000 0.000 0.000 0.000 0.000 0.249 0.175 0.267 0.046  
 

 A4 0.000 0.000 0.000 0.000 0.000 0.253 0.250 0.240 0.362  
 

 A5 0.000 0.000 0.000 0.000 0.000 0.125 0.160 0.159 0.251  
 

 Environmental effectiveness 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.500  
 

 Social acceptability 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.500  
 

 Financial affordability 0.000 0.000 0.000 0.000 0.000 0.000 0.286 0.000 1.000  
 

 Implementability 0.000 0.000 0.000 0.000 0.000 0.000 0.714 0.000 0.000  
 

 
 
 
 

Table 11. Weighted supermartrix to select the best petroleum contaminated site remedial countermeasure.  
 

  

A1 A2 A3 A4 A5 
Environmental Social Financial 

Implementability 
 

  effectiveness acceptability affordability 
 

 A1 0.000 0.000 0.000 0.000 0.000 0.044 0.047 0.124 0.127 
 

 A2 0.000 0.000 0.000 0.000 0.000 0.134 0.092 0.082 0.018 
 

 A3 0.000 0.000 0.000 0.000 0.000 0.119 0.058 0.165 0.020 
 

 A4 0.000 0.000 0.000 0.000 0.000 0.121 0.084 0.148 0.153 
 

 A5 0.000 0.000 0.000 0.000 0.000 0.060 0.053 0.098 0.106 
 

 Environmental effectiveness 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.384 0.312 
 

 Social acceptability 0.000 0.000 0.000 0.000 0.000 0.522 0.000 0.000 0.312 
 

 Financial affordability 0.000 0.000 0.000 0.000 0.000 0.000 0.190 0.000 0.312 
 

 Implementability 0.000 0.000 0.000 0.000 0.000 0.000 0.475 0.000 0.000 
 

 
 

 

thoughtfulness and responsibilities are fully 
demonstrated in the group DSS, which improves 
group decision making transparency.  
5. The group fuzzy ANP approach is more 

preferred in dealing with the uncertainty. Future 

 
 

 

research goals include extending the group Fuzzy 
ANP approach to larger and more complex 

network structure, carrying out sensitivity analysis, 
and figuring out the contribution value of every 

decision maker for the final judgment. 
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Table 12. Limit supermartrix to select the best petroleum contaminated site remedial countermeasure.  

 
 

A1 A2 A3 A4 A5 
Environmental Social Financial 

Implementability  

 effectiveness acceptability affordability  

       
 

A1 0.000 0.000 0.000 0.000 0.000 0.084 0.084 0.084 0.084 
 

A2 0.000 0.000 0.000 0.000 0.000 0.081 0.081 0.081 0.081 
 

A3 0.000 0.000 0.000 0.000 0.000 0.088 0.088 0.088 0.088 
 

A4 0.000 0.000 0.000 0.000 0.000 0.125 0.125 0.125 0.125 
 

A5 0.000 0.000 0.000 0.000 0.000 0.079 0.079 0.079 0.079 
 

Environmental effectiveness 0.000 0.000 0.000 0.000 0.000 0.125 0.125 0.125 0.125 
 

Social acceptability 0.000 0.000 0.000 0.000 0.000 0.153 0.153 0.153 0.153 
 

Financial affordability 0.000 0.000 0.000 0.000 0.000 0.131 0.131 0.131 0.131 
 

Implementability 0.000 0.000 0.000 0.000 0.000 0.134 0.134 0.134 0.134 
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APPENDIX A 
 

Theorem 1 
 

When the decision maker DMk evaluates element Ei , for 

all i , the nonlinear programming problem (Equation 9) 

has a global optimal solution  g
*   g

*
1 , g

* 2 , , gn
* T ,, 

 
 n n    

 

and gi
*  

1  bi    1 ai    bi 
a

i 
, i  1,2,  , n , (A-1) 

 

i1 i1  
 

n   
  

a
i
1 a

i  
i 1 

 
N N 

where ai     H 2
 (i

k
 ) , and bi     H (i

k
 )i

k
 . 

k 1 k 1 

 

Proof 
 

When the decision maker DMk evaluates element Ei , for all i , 

then there exist ik  0 , and H (ik )  1 , otherwise ik  0 , and 

H (ik )  0 . If there exists at least one decision maker 

evaluates element Ei , for a group of N 

decision makers, 
vectors are not all zero, such 

 

that H (i
1 ), H (i

2 ), , H (i
N
 ) are not all zero. The 

objective 
 

function (9) can be solved using the Langrange multiplier 

method. The Langrangian function is built as follows: 
 

L(g ,)  Q(g )  g(g ) , (A-2) 

 
n 

where g(g )  gi1, for alli. 
i 1 

 

Let the fist partial derivatives L  and  L be zero for all i , 
 

           


gi     
 

then we have from (A-2) that:        
 

 
L  

 N            
(A-3) 

 

    (i
k
  H (i

k
 )gi )(H (i

k
 ))    0,    

 

 

gi 
   

 

  k1             
 

 
L 

   n            

(A-4) 
 

  gi 1  0.           
 

            
 

  i1             
 

       N 
2
 (i

k
 ) , 

   N     
 

Suppose that ai     H and bi     H (i
k )i

k for all i , then 
 

       k 1      k 1     
 

we  could have ai   0 , and  bi   0 since   both 
 

vectors   i
1 ,i

2 ,  ,i
N
 , and the corresponding 

 

vectors H (i
1 ), H (i

2 ),  , H (i
N ) are not all zero.  

 

 Hence, gi*  and *  for all i can be obtained by solving 
 

(A-3) and (A-4) together as given as:     
 

     n  n           
 

     1  bi    1 ai    bi  ai  

, 
       

(A-5) 
 

gi
*
  i1  i1         

 

  n          
 

     ai    1 ai           
  

i1 

H (i
1
 ), H (i

2
 ),  , H (i

N
 ) 

i
1
 ,i

2
 ,  ,i

N
 



  

      
 

   n   
 

 1    bi  ai . (A-6) 
 

 n 
1 

 

*  i   
   

1 ai  
i1 

 

Similarly, since L(g ,) is twice differentiable at the extremum 

 g
*
   g

*
 1 , g

*
 2 , ,  gn

*
 T

 , then the bordered Hessian 

determinant as explained by Avriel (1976) can be given by: 
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 2L  g    
 

     g
*
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*
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Dq (g
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M
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, (A-7) 
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where M is defined as the number of constraint equations, 
and q   M 1, M   2,  ,n . are not all zero, 
 

and Dq ( *g , * ) is positive, such that Q ( g ) has a strict 

local minimum at: 
 

 
*
g    

*
g1 , 

*
g 2 , , 

*
gn T

 , 
 

where 

 
  n n     

 

 1 bi    1 ai    bi  ai     
 

gi
*
 

 i1 i1     
 

 n      
 

  
a

i
1 a

i 

, i 1,2,  ,n . 

 
 

  i1   
 

Since 
   n  

is  a  nonempty 
 

R   (g1 ,  ,gn ) |  gi 1,i 1,2,  , n 
 

     i1   
 

convex set, and Q(g ) is a convex function on R , we can 
 

follow that Q(g* ) is a global minimum if Q(g ) has a local 
 

minimum at  g*  .     
  


