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Chlorofluorocarbons are mainly responsible for the depletion of stratospheric ozone layer which results 
in increase of UV-B radiation on earth’s environment and causing adverse effects on flora. In the present 
study we have investigated the effect of ultraviolet-B (UV-B) radiation on two cryptogamic plants 
(Xanthoria elegans and Bryum argenteum) growing at high altitude of central Himalayan region of India. 
These plants were naturally receiving UV-B radiation and were analyzed for photosynthetic pigments, UV-
B absorbing compounds and phenolics. In the field experiments, both of these plants contain higher 
amounts of UV-B absorbing compounds and phenolics and no major changes in total chlorophyll and 
carotenoid under UV-B exposed conditions were recorded. B. argenteum contains higher amounts of 
total chlorophyll, carotenoids, UV-B absorbing compounds and phenolics than the X. elegans at the 
duration of 120 h. The maximum average UV-B irradiance was 4.38 Minimal Erythemal Dose per hour 
(MED/ h) at the experimental site while minimum average UV-B irradiance was 1.72 MED/ h. The UV-B 
absorbing compounds and phenolics provide protection to these plants against UV-B radiation. 
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INTRODUCTION 

 
Depletion of the stratospheric ozone layer results in to 
increase in the ultraviolet-B (UV-B) radiation (280 to 320 
nm) reaching the earth surface. Destruction of ozone layer 
is due to release of chlorofluorocarbons, resulting in 
stratospheric ozone thinning (Anderson et al., 1991; 
Schoeberl and Hartmann, 1991), consequently UV-B 
levels increases (McKenzie et al., 2003). The high intensity 
of UV-B radiation on earth’s surface causes adverse 
effects on flora. The potential effects of UV-B radiation on 
phototrophic organisms may be grouped into three 
categories: (a) changes in photosynthesis and growth 
(Xiong and Day, 2001), (b) increased investment in UV-B 
absorbing or screening compounds (Cockell and 
Knowland, 1999; Searles et al., 2001) and (c) DNA 
damage, repair and photoreactivation (Lud et al., 2001a).  
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UV-B radiation varies naturally with the latitude, season 
and depends on vegetation canopy, clouds etc., (Aphalo, 
2003). According to Madronich et al. (1995) at high 
latitudes the relative ozone depletion is higher. Many of the 
studies conducted with vascular plants and bryophytes 
reveals that the UV-B effects were often highly variable, 
and depends on the species tolerance and UV-B doses. 
The naturally induced UV-B affects plant growth, 
morphology, secondary metabolism and photosynthesis 
(Allen et al., 1998; Searles et al., 2001; Pancotto et al., 
2003). Plants are able to deal with UV-B induced stress 
because of UV-B absorbing compounds which are 
widespread and are found in lower to higher plants, 
including aquatic to terrestrial life forms (Rozema et al., 
2002). One of the many roles of UV-B absorbing 
compounds and phenolics appears to be the protection of 
organisms from harmful effects of UV-B radiation by 
means of their direct absorption of 280 nm to 320 nm 
wavelengths. The phenolics were also protecting the 
plants from exposure of UV-B radiation, it may contribute 
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Experimental Sites  
Site 1- X. elegans  
Site 2- B. argenteum 

 
Figure 1. Map indicating selected sites for field experiments near Mana village, district Chamoli, Uttrakhand, India (www.mapsofindia.com). 
 
 
 

to the decrease in active oxygen species by acting as 
antioxidants (Husain et al., 1987; Markham et al., 1998; 
Ryan et al., 2002).  

In the present study, we have measured the UV-B 
radiation and their effects on the pigments of two 
cryptogamic plants (Xanthoria elegans and Bryum 
argenteum) growing at high altitude of central Himalayan 
region (near Mana village, district Chamoli of Uttrakhand), 
India. 
 

 
MATERIALS AND METHODS 
 
Site selection 
 
For the UV-B measurements, the sites near Mana village (3219 m, 
altitude) of district Chamoli, Uttrakhand, central Himalayan region of 
India were selected. For the UV-B filter frame studies, with X. 
elegans, site 1 was selected at Bheempul (30°44’577N; 70°29’628E) 

of Mana village, and for the B. argenteum, site 2 (30°44’540N; 
70°29’598E) was selected at the down side of the Bheempul (Figure 
1). 

 

Selection of plant species 
 
Two plant species, lichen (X. elegans) and moss (B. argenteum) 
were selected and both were growing naturally on the mountains with 

other cryptogamic vegetation (Figure 2a and b). We have selected 
these plants for the field experiments because of their uniform 
growth, availability and UV-B filter frames can be placed 

 
 
 
 
over these plants. 

 

UV-B filter frames 
 
The UV-B filter frames were made up of iron stands which were 
covered by plexiglas acrylic sheet, so that plants will get PAR 
(photosyntheticaly active radiation) but not UV-B radiation. The 
acrylic sheet (3 mm thick and 30.5 cm squire) absorbs about 98% of 
total UV-B radiation. Iron frames having holes for gaseous exchange 
and the other environmental factors were same for both the 
conditions. At five sites, the UV filters frames (30.5 cm length × 30.5 

cm width × 30.5 cm height) were placed over the selected plant 
species to develop UV-B unexposed conditions. 

 

Analysis of pigments 
 
All the analysis performed with two different experimental set up (i) 
UV-B exposed (plants without UV-B filter frame) and (ii) UV-B 
unexposed (plants covered with UV-B filter frame) conditions. Plant 
samples were harvested after 24, 48, 72, 96 and 120 h and washed 
with doubled distilled water, blotted dry on Whatman filter paper No.1 
and their weight recorded. For the estimation of both pigments 
following standard methodologies used. 

 
Analysis of photosynthetic pigments (total chlorophyll and 
carotenoids) 
 
The plant samples were crushed with 80% acetone, maintained at 
4°C and centrifuged at 10,000 rpm for 15 min under refrigerated 
centrifuge at 4°C temperature. The centrifuged samples were 
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Figure 2. Naturally growing plants of (a) Bryum argenteum and (b) Xanthoria elegans under 
UV-B exposed conditions. 

 

 
filtered by Whatman filter paper No. 1 and the supernatant was 
collected. The absorbance of supernatants was recorded at 663, 645, 
480 and 510 nm by using UV-VIS spectrophotometer 117. The 
chlorophyll content was calculated from absorbance values at 663 
and 645 nm (Arnon, 1949) and the carotenoid content from 
absorbance values at 480 and 510 nm (Parsons et al., 1984). 
 
 
Estimation of UV-B absorbing compounds 
 
For the estimation of UV-B absorbing compounds, methodology of 
Ruhland and Day (2001) was used. The plant samples were placed 
in 25 ml Erlenmeyer flasks containing 5 ml of acidified methanol 
(MeOH:HCl:H2O, 90:1:1 v/v). The supernatants were heated (60°C) 
and stirred for 10 min, cooled at room temperature for 15 min and 
filtered through 90 μm screens. Concentrations of soluble UV-B 
absorbing compounds were estimated by measuring absorbance at  
300 nm with spectrophotometer (Systronics UV-VIS 
spectrophotometer 117). 
 
 
Estimation of phenolics 
 
For phenolics estimation methodology of Pirie and Mullins (1976) 
was used. A ten percent (w/v) homogenate prepared in methanolic 
HCl (50% methanol, 0.05% concentrated HCl, pH 3.5). The 
precipitate was allowed to settle for 15 h in the dark at 0-4°C and 
filtered through Whatman filter paper No.5. The absorbance of 
supernatant was recorded at 280 nm and gallic acid (Sigma 
chemicals, Germany) was used as standard. 
 
 
Measurement of UV- B radiation 
 
The UV-B radiation recorded by the UV- Biometer (Solar UV-
Biometer, SOLAR LIGHT CO. 501, recorder S. No. 9343 and sensor 
S. No. 10402, U. K.), from 31st August 2008 to 5th September 2008 
at the site of experiments during the clear sunny days. 

 
Statistical analysis 
 
The mean values along with standard error were calculated. The 
relative standard derivations of means were less than 5%. The 

 
 

 
student ‘t’ test described by Fisher (1950) was employed to calculate 
the statistical significant values. 
 

 

RESULTS 

 
UV-B radiation 

 

UV-B radiation (280 to 320 nm) were measured for the 
continuous 120 h at the selected sites and the average 
UV-B irradiances was 3.426 MED/h. The maximum 
average UV-B irradiance (4.38 MED/ h) was recorded at 
72 h where as minimum was 1.72 MED/ h at 120 h (Figure 
3). It was observed that the UV-B irradiance values were 
increasing from morning to noon and then decreased till 
evening. 
 

 

Photosynthetic pigments 

 

There was decrease (p<0.02) in total chlorophyll of UV-B 
exposed plants of B. argenteum at 96 h as compared to 
UV-B unexposed plants (Table 1) and at that time the UV-
B irradiance was 3.67 MED/h. In UV-B exposed plants of 
X. elegans, the decrease (p<0.05) in total chlorophyll was 
found at 120 h as compared to UV-B unexposed plants 
(Table 1) and at that time the UV-B irradiance was 1.72 
MED/h. The increase (p<0.02) in carotenoids of UV-B 
exposed plants of B. argenteum and X. elegans was 
recorded at 120 h as compared to UV-B unexposed plants 
(Table 2) and at that time the UV-B irradiance was 1.72 
MED/h.  

The significant increase (p<0.02) in UV-B absorbing 

compounds and phenolics of X. elegans were recorded at 120 

h under the UV-B exposed conditions (Figures 4 and 5) and 

the values of UV-B irradiance was 1.72 MED/h. In B. 

argenteum, significant increase (p<0.02) in UV-B absorbing 

compounds and phenolics (p<0.05) were found at 120 h 

under UV-B exposed condition (Figures 6 and 7) 
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Figure 3. UV-B irradiance (MED/ h) from 0 h to 120 h. Inset: (a) Daily irradiance curve for one 

clear sunny day. 
 

 
Table 1. Changes in total chlorophyll of B. argenteum and X. elegans (mg/ g fresh weight) in UV-B exposed and unexposed.  

 

Plant species 
   Time (h)   

 

 

0 24 48 72 96 120 
 

  
 

B. argenteum 
Unexposed 0.660±0.006 0.658±0.012 0.655±0.009 0.657±0.013 0.659±0.010 0.656±0.008 

 

Exposed 0.660±0.007 0.657±0.019 0.659±0.024 0.658±0.015 0.651±0.013 0.649±0.014  

 
 

X. elegans 
Unexposed 0.540±0.011 0.539±0.014 0.537±0.021 0.538±0.011 0.535±0.007 0.538±0.003 

 

Exposed 0.540±0.009 0.537±0.018 0.535±0.033 0.539±0.019 0.538±0.012 0.532±0.013  

 
 

 
Above values are the mean±SE of three replicates. 

 

 
Table 2. Changes in total carotenoid of B. argenteum and X. elegans (mg/ g fresh weight) in UV-B exposed and unexposed.  

 

Plant species 
   Time (h)   

 

 

0 24 48 72 96 120  

  
 

B. argenteum 
Unexposed 0.360±0.005 0.358±0.009 0.355±0.011 0.358±0.013 0.359±0.006 0.355±0.008 

 

Exposed 0.360±0.009 0.355±0.012 0.359±0.017 0.357±0.022 0.358±0.012 0.363±0.021  

 
 

X. elegans 
Unexposed 0.220±0.003 0.219±0.014 0.216±0.011 0.218±0.009 0.219±0.011 0.217±0.009 

 

Exposed 0.220±0.007 0.217±0.012 0.219±0.013 0.216±0.016 0.217±0.015 0.224±0.019  

 
 

 
Above values are the mean±SE of three replicates. 

 

 

and the UV-B irradiance was 1.72 MED/h. However, 
increase in the phenolics in B. argenteum is more or less 
same at 72, 96 and 120 h. The UV-B absorbing 
compounds and phenolics of both plants were positively 
associated with UV-B radiation exposure. In both the UV-
B unexposed plants, there were no significant changes in 
UV-B absorbing compounds and phenolics during the 
course of the study. 

 
 

 

DISCUSSION 

 

The experimental evidences suggests that the ultraviolet 
radiation reaching on earth surface varies with altitude, 
atmospheric condition and types of instrument used for 
UV-B radiation measurement. Zaratti et al. (2003) reported 
that the erythemally weighted UV radiation increases with 
altitudes at an approximate rate of 7% per 
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Figure 4. UV-B absorbing compounds in X. elegans under the UV-B exposed and 
unexposed conditions.  
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Figure 5. Phenolics in X. elegans under the UV-B exposed and unexposed 

conditions. 
 
 
 
km. Mckenzie et al. (2003) also reported that the 
erythemally weighted UV irradiances increases by 
approximately 5 to 7% per km with the greatest increase 
occurring at solar zenith angle (SZA) ~ 60-70°. 

 
 
 
 

In B. argenteum and X. elegans, total chlorophyll and 
carotenoids concentration showed no major changes at 24 
h interval under UV-B exposed and unexposed conditions. 
Decrease in chlorophyll of B. argenteum and 
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Figure 6. UV-B absorbing compounds in B. argenteum under the UV-B exposed 
and unexposed conditions.  
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Figure 7. Phenolics in B. argenteum under the UV-B exposed and unexposed 

conditions. 
 

 

X. elegans was found at 96 and 120 h respectively while 
increase in carotenoid of both the plants were found at 120 
h. Newsham et al. (2002) conducted the similar UV related 
onsite study with two Antarctic plants (Cephaloziella 
varians and Sanionia uncinata) and found no change in 
photosynthetic pigments except increase in 

 
 

 

carotenoid. It was observed by Newsham et al. (2005) that 
the chlorophyll concentrations were reduced in sun 
exposed C. varians tissues. Robinson et al. (2005) found 
that the concentration of chlorophyll in Grimmia antarctici 
under near ambient UV radiation was lower and  
correspondingly high relative concentration of 
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carotenoids was recorded under reduced UV radiation. A 
similar study with lichen was conducted by Larsson et al. 
(2009) and documented no significant reduction in 
chlorophyll a and b on Lobaria pulmonaria and Xanthoria 

aureola at different UV-B levels (0, 0.1, 0.3 and 1.0 W m-

2) under the laboratory conditions. Lud et al. (2001b) did 
not found any differences in chlorophyll, carotenoid, UV-B 
absorbing compounds and photosystem II efficiency in 
Turgidosculum complicatulum exposed to various 
combinations of UV radiation and temperature. Day et al. 
(1999), Searles et al. (2001), Lud et al. (2002), and 
Newsham (2003) have found no effects of UV-B radiation 
on chlorophyll concentration of the plants.  

We have found that UV-B absorbing compounds and 
phenolics in the exposed plants were increasing under the 
influence of UV-B radiation. Dunn (2000) reported that out 
of the three dominant mosses (Bryum psudotriquetrum, 
Ceratodon purpureus and G. antarctici) only B. 
psudotriquetrum produced UV-B absorbing pigments in 
response to increased UV-B radiation. Newsham et al. 
(2002) reported that the UV-B screening pigment 
concentrations of C. varians and S. uncinata were 
positively associated with daily doses of UV-B radiation in 
an in situ study conducted at Rothera point under 4 to 6 
week. de la Rosa et al. (2001) reported that the 
concentrations of total phenolics were significantly 
increases by UV-B radiation. Dunn and Robinson (2006) 
reported that the higher concentration of UV-B absorbing 
compounds in two cosmopolitan moss with B. 
psudotriquetrum and C. purpureus, while Schistidium 
antarctici showing the lower concentration of UV-B 
absorbing compounds in response to UV-B radiation over 
the season (November 1999 - March 2000). Cockell and 
Knowland (1999) reported that the plants are accumulating 
the UV screening compounds in response to UV-B 
radiation stress. Rozema et al. (2002) and Singh et al. 
(2011) reported that the atronin, usnic acid, perlatolic acid 
and fumarphotocetraric acid were appeared to be 
constitutive in lichen, these all are UV-B absorbing 
compounds, takes a major part in lichens and are 
particularly induced by UV-B radiation. The UV-B 
absorbing compounds and phenolics are produced by the 
plants under the influence of UV-B radiation and thereby 
provides protection against the UV-B radiation. Therefore, 
in B. argenteum and X. elegans UV-B absorbing and 
phenolic might be responsible for providing protection 
against UV-B radiation. 
 

 
Conclusion 

 

Our study demonstrates the changes in pigments of two 
cryptogamic plants under UV-B exposed conditions at high 
altitude of central Himalayan region of India. B. argenteum 
and X. elegans were naturally exposed to UV-B radiation 
at study sites with a maximum average UV-B irradiance of 
4.38 MED/ h and minimum average UV-B irradiance of 
1.72 MED/ h during the study period. In both 

  
  

 
 

 

the UV-B exposed plants, UV-B absorbing compounds 
and phenolics were increasing during the study period. 
These findings suggest that the UV-B radiation induces 
synthesis of UV-B absorbing compounds and phenolics, 
therefore, these plants are able to deal with negative 
effects of UV-B radiation. 
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